Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Geology & the lithosphere
Few topics cut across the soil science discipline wider than research on soil carbon. This book contains 48 chapters that focus on novel and exciting aspects of soil carbon research from all over the world. It includes review papers by global leaders in soil carbon research, and the book ends with a list and discussion of global soil carbon research priorities. Chapters are loosely grouped in four sections: A wide variety of topics is included: soil carbon modelling, measurement, monitoring, microbial dynamics, soil carbon management and 12 chapters focus on national or regional soil carbon stock assessments. The book provides up-to-date information for researchers interested in soil carbon in relation to climate change and to researchers that are interested in soil carbon for the maintenance of soil quality and fertility. Papers in this book were presented at the "IUSS Global Soil C Conference "that was held at the University of Wisconsin-Madison, USA."
Explore Earth's natural treasures, from their primeval origins to traditional uses and modern-day appeal with this illustrated guide to rocks, minerals, crystals, gems and more! Featuring sparkling crystals, vibrant gemstones, and other precious materials often prized for their beauty, such as amber, coral, and fossils, this illustrated guide is sure to captivate every rockhound and budding gemmologist. Learn how to identify more than 450 rock and mineral specimens through beautiful photographs and key characteristics. Discover more about rocks and minerals through folklore and historical artefacts, and find out the fascinating stories behind some of the amazing natural treasures, including the Hope Diamond and the Great Mogul emerald. Plus there is information on polishing and displaying your finds to further equip you with all the knowledge needed to become a rock and mineral collector. Dive deep into this riveting book on rocks and minerals to further discover: - Comprehensive coverage of more than 450 specimens of rocks, minerals, crystals, gems and fossils. - Expert text and high-quality images combine to make this an indispensable reference tool for every rockhound and budding gemmologist. - Detailed reference panels provide key at-a-glance information for identifying specimens. - Feature panels on folklore, historical artefacts, and famous gems tell the fascinating stories of rocks and minerals. - Includes information on collecting and showing rocks and minerals Practical advice on cutting, polishing, and displaying your finds further equips you with all the knowledge needed to delve into the arena of rock and mineral collecting.
"Soil as World Heritage" celebrates a half century of field experiments on the Balti Steppe, in Moldova - where Dokuchaev first described the Typical Chernozem in 1877, protected from the elements by a unique system of shelter belts designed by the great man, and now provisionally listed as the first World Heritage Site for soil. The book presents contributions to the 2012 international symposium attended by researchers, practitioners and policy makers from the European Commission and countries as diverse as Belarus, Bulgaria, the Czech Republic, France, Germany, Italy, the Netherlands, Romania, Russia, Ukraine, United Kingdom, USA and, of course, Moldova itself. The experimental data demonstrate the damage caused by human activity to the productivity and integrity of the black earth and, also, ways to restore its fertility. Results from even longer-established trials worldwide also demonstrate that agricultural practices are driving global warming, leaching of nutrients, pollution of water resources, diversion of rainfall away from replenishment of soil and groundwater to destructive runoff, and destroying soil organic matter and biodiversity. These are pressing issues for our generation and will press harder on future generations. Long-term field experiments, and the scientific skills and experience that they nurture, will be more and more valuable as a foundation and focus for interdisciplinary teams studying the effects of farming practices on the soil and soil life so as to devise a sustainable alternative. Europe-wide and worldwide contributions also discuss economic incentives - carbon and green water credits - which themselves require robust supporting data, and legislative aspects of promoting more sustainable farming systems. The outcomes of the conference include recommendations for institutional support for sustainable farming and a draft of the law on land and soil management for the Parliament of Moldova."
This volume, based on the Russian edition publised in 1980, presents the fundamentals of mathematical geology. New developments which have taken place in the last ten years or so have been taken into account as far as possible, and this English edition contains two new chapters devoted, respectively, to random processes and a survey of future geological problems. The book has eight chapters. Chapter one deals with the basic question "what is mathematical geology?" Chapter two deals with the concept of probability. Chapter three relates this fundamental tool to geological problems with the help of specific examples. Chapters four through six cover the theory of random sequence and concentrates on the form which is the most useful to geologists. Chapter seven is dedicated to continuous Markov processes which occur frequently in geological phenomena. The volume concludes with an overview of ideas which have been generated by mathematical geology and which pave the way for the further development of the subject.
Terrestrial mass movements (i.e. cliff collapses, soil creeps,
mudflows, landslides etc.) are severe forms of natural disasters
mostly occurring in mountainous terrain, which is subjected to
specific geological, geomorphological and climatological
conditions, as well as to human activities. It is a challenging
task to accurately define the position, type and activity of mass
movements for the purpose of creating inventory records and
potential vulnerability maps. Remote sensing techniques, in
combination with Geographic Information System tools, allow
state-of-the-art investigation of the degree of potential mass
movements and modeling surface processes for hazard and risk
mapping. Similarly, through statistical prediction models, future
mass-movement-prone areas can be identified and damages can to a
certain extent be minimized. Issues of scale and selection of
morphological attributes for the scientific analysis of mass
movements call for new developments in data modeling and
spatio-temporal GIS analysis.
This book presents the first compilation of scientific research on the island of Nisyros, involving various geoscientific disciplines. Presenting a wealth of illustrations and maps, including a geological map of the volcano, it also provides valuable insights into the geothermal potential of Greece. The island of Nisyros is a Quaternary volcano located at the easternmost end of the South Aegean Volcanic Arc. The island is nearly circular, with an average diameter of 8 km, and covers an area of approximately 42 km2. It lies above a base of Mesozoic limestone and a thin crust, with the mantle-crust transition located at a depth of approximately 27 km. The volcanic edifice of Nisyros comprises a succession of calc-alkaline lavas and pyroclastic rocks, as well as a summit caldera with an average diameter of 4 km. Nisyros marks the most recent volcano in the large prehistoric volcanic field between Kos-Yali-Strongyli-Pyrgousa-Pachia-Nisyros, where the largest eruption ("Kos Plateau Tuff") in the history of the eastern Mediterranean devastated the Dodecanese islands 161,000 years ago. Although the last volcanic activity on Nisyros dates back at least 20,000 to 25,000 years, it encompasses an active hydrothermal system underneath the volcano with temperatures of roughly 100 DegreesC at the Lakki plain, the present-day caldera floor and 350 DegreesC at a depth of 1,550 m. A high level of seismic unrest, thermal waters and fumarolic gases bear testament to its continuous activity, which is due to a large volume of hot rocks and magma batches at greater depths, between 3,000 and 8,000 m. Violent hydrothermal eruptions accompanied by major earthquakes occurred in 1873 and 1888 and left behind large, "world-wide unique" explosion craters in the old caldera. Through diffuse soil degassing, the discharge of all hydrothermal craters in the Lakki plain releases 68 tons of hydrothermal-volcanic derived CO2 and 42 MW of thermal energy per day. This unique volcanic and hydrothermal environment is visited daily by hundreds of tourists.
In the second edition Steve Kesler (University of Michigan) has been added as an author to rewrite some chapters. The motivation for this revised edition is to more intensively address economic issues that surround the exploitation of mineral resources. This emphasis gives the book a unique character. With these sections "Metals and Society" deals with issues that pervade much of current science reporting the rate of exploitation of natural resources, the question of when or if these resources will be exhausted, the pollution and social disturbance that accompanies mining, the compromises and challenges that arise from the explosion of demand from China, India and other rapidly developing countries, and the moral issues that surround mining of metals in lesser developed countries for consumption in the first-world countries. With its dual character, the book will be useful as an introductory text for students in the earth sciences and a reference volume for students, teachers and researchers of geography, economics and the social sciences. "
This book offers a problem-and-solution approach to environmental remediation in mining, including the environmentally sustainable utilization of waste materials from the mining industry. It largely comprises articles published in Springer journals, which have been thoroughly revised and expanded. With supplementary data and illustrations, it discusses specific problem areas in relevant Caribbean locations and provides an overview of geotechnical and microbial solutions to prevent post-mining deterioration in this area.
The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories. A considerable effort has been invested here into the clarity and brevity of the presentation. A special feature of this book is in exploring thermomechanical consistency of all presented constitutive models in a simple and systematic manner.
This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions. Scientific observations and results are presented, along with numerous illustrations. This work has an interdisciplinary appeal and will engage scholars in geology, geography, chemistry, meteorology and physics, amongst others with an interest in the Earth system and environmental change.body>
This book summarizes systematic data on nanogold in geological objects, including mineral-concentrators of nanogold, and the structure and chemical composition of nanogold aggregates. The book also discusses problems that arise during the development of nanogold resources and provides recommendations for prospering new gold deposits with thin-dispersed gold. Electronic microphotos and microprobe analyses support this comprehensive overview of the genesis of nanogold. The book especially focuses on the genesis of nanogold, the processes of nanogold concentration in natural environments, and geological formations containing nanogold.
I write because I am concerned that I and my agricultural colleagues have avoided addressing the moral dimension of the environmental and social problems we have contributed to. I hope for an exchange of ideas about agriculture's moral dilemmas. I encourage my readers to engage in a collective conversation about the dilemmas and avoid remaining in what Merton calls "the collective arrogance and despair of his own herd." If those engaged in agriculture continue to ignore and fail to realize our common difficulties they will be addressed and resolved by societal pressure and political action, which may not yield the resolution we favor. The book's goal is not to resolve the moral dilemmas raised. It is to raise them and encourage thought and discussion. It will ask but not answer why nearly all involved in agriculture have not addressed the moral concerns voiced by the general public. The agricultural enterprise is committed to the benefits and future success of the present, very productive, chemical, capital, and energy intensive system, which is, in the minds of many, not sustainable. The internal justification invokes the moral claim that they feed the world's population. The question remains whether or not the prevailing moral justification of feeding the world is adequate given all the issues modern, developed country agriculture faces: pesticides in soil, water, and food, cruelty to animals, Biotech/GMO's, corporate agriculture, pollution by animal factory waste, exploitation of and cruelty to migrant labor.
Feeding the increasing global population, which is projected to reach ~10 billion by 2050, there has been increasing demands for more improved/sustainable agricultural management practices that can be followed by farmers to improve productivity without jeopardizing the environment and ecosystem. Indeed, about 95% of our food directly or indirectly comes from soil. It is a precious resource, and sustainable soil management is a critical socio-economic and environmental issue. Maintaining the environmental sustainability while the world is facing resource degradation, increasing climate change and population explosion is the current challenge of every food production sectors. Thus, there is an urgent need to evolve a holistic approach such as conservation agriculture to sustain higher crop productivity in the country without deteriorating soil health. Conservation Agriculture (CA), is a sustainable approach to manage agro-ecosystems in order to improve productivity, increase farm profitabilty and food security and also enhance the resource base and environment. Worldwide, it has been reported various benefits and prospects in adopting CA technologies in different agro-climatic conditions. Yet, CA in arid and semi-arid regions of India and parts of south Asia raises uncertainities due to its extreme climates, large scale residue burning, soil erosion and other constraints such as low water holding capacity, high potential evapotranspiration, etc . Thus, the proposed book has 30 chapters addressing all issues relevant to conservation agriculture/no-till farming system. The book also gives further strengthening existing knowledge in relation to soil physical, chemical and biological processes and health within close proximity of CA as well as machinery requirements. Moreover, the information on carbon (C) sequestration, C credits, greenhouse gas (GHG) emission, mitigation of climate change effects and socio-economic view on CA under diverse ecologies namely rainfed, irrigated and hill eco-region is also deliberated. For large scale adoption of CA practices in South Asian region especially in India and other countries need dissemination of best-bet CA technologies for dominant soil types/cropping systems through participatory mode, strong linkages and institutional mechanism and public-private-policy support. We hope this book gives a comprehensive and clear picture about conservation agriculture/no-till farming and its associated problem, challenges, prospects and benefits. This book shall be highly useful reference material to researchers, scientists, students, farmers and land managers for efficient and sustainable management of natural resources.
The second half of the past century witnessed a remarkable paradigm shift in approach to the understanding of igneous rocks. Global literature records a change from a classical petrographic approach to emphasis on mineral chemistry, trace element characteristics, tectonic setting, phase relations, and theoretical simulation of magma generation and evolution processes. This book contains contributions by international experts in different fields of igneous petrology and presents an overview of recent developments. This book is dedicated to the late Dr Mihir K. Bose, former professor of the Department of Geology, Presidency College, Calcutta, India, who actively participated in the development of this new global view of igneous petrology.
This book includes the full research papers accepted by the scientific programme committee for the 22nd AGILE Conference on Geographic Information Science, held in June 2019 at Cyprus University of Technology, Limassol, Cyprus. It is intended primarily for professionals and researchers in geographic information science, as well as those in related fields in which geoinformation application plays a significant role.
This book presents an analysis of our current knowledge on the origin of the Earth's continental crust. There are two aspects to consider: tectonic and igneous processes. Tectonic aspects include sedimentary accretion, terrane accretion, and continental collision at continental margins, in association with plate subduction. These processes result in the formation of large mountain belts, the building up of which literally grows the continents. However, these tectonic aspects are concerned with material recycling within the crust, and hence do not contribute to volumetric growth of continental crust. Igneous processes concern separation of continental crust from the mantle and result in the volumetric growth of continental crust. Therefore, the main focus of this book is to systematically examine why and how the Earth's continental crust forms, by evaluating magmatic processes at island arcs where new continental crust forms.
This book introduces systematically the cryospheric science, covering the formation, development, evolution, and research methods of each component of the cryosphere, the interaction between the cryosphere and the other spheres of the climate system and the anthroposphere, and the hot topics of social and economic sustainable development and geopolitics. The authors are world-renowned experts and scientists working in the related fields. They have a deep understanding and accurate grasp of the basic theory, evolution mechanism, and international frontiers of the cryosphere, as well as rich teaching experience, which makes this book suitable also as textbook for graduate students. It is also the first book that introduces the knowledge of cryospheric science systematically. In addition to theoretical knowledge, the book also introduces field work and experimental analysis. It should be of interests for the scholars and graduate student working in the fields of geography, hydrology, geology, geomorphology, atmosphere, ecology, environment, oceanography, and regional economic and social sustainable development.
Dykes occur in a wide variety of geological and tectonic settings and their detailed study through space and time is imperative for understanding several geological events. Dykes are believed to be an integral part of continental rifting and when they occur as spatially extensive swarms of adequate size, they can be of immense utility in continental reconstructions and also help to identify Large Igneous Provinces (LIPs). It is known that continental flood basalts and major dyke swarms have their origin related in some way to the up-rise of hot mantle plumes which may lead to rifting and eventual continental break-up. Dykes signify crustal extension and are important indicators of crustal stabilisation events, supercontinental assembly and dispersal, crust-mantle interaction and play a significant role in the delineation of crustal provinces as well as in deciphering crustal evolution events. Many economic mineral deposits of the world are also associated with a variety of dykes. The volume will provide state-of-the-art information on all aspects of dykes with emphasis on the origin, evolution and emplacement of dykes.
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installation processes is a very challenging task. Some hints about possible effects and their consideration are given in this book which may provide a help for such estimations which are still not possible to be given in a satisfactory manner. |
You may like...
Annual Report of the Board of Regents of…
Smithsonian Institution
Hardcover
R773
Discovery Miles 7 730
United States Circuit Court of Appeals…
U S Court of Appeals Ninth Circuit
Paperback
R720
Discovery Miles 7 200
|