Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > Knowledge-based systems / expert systems
This book promotes a meaningful and appropriate dialogue and cross-disciplinary partnerships on Artificial Intelligence (AI) in governance and disaster management. The frequency and the cost of losses and damages due to disasters are rising every year. From wildfires to tsunamis, drought to hurricanes, floods to landslides combined with chemical, nuclear and biological disasters of epidemic proportions has increased human vulnerability and ecosystem sustainability. Life is not as it used to be and governance to manage disasters cannot be a business as usual. The quantum and proportion of responsibilities with the emergency services has increased many times to strain them beyond their human capacities. Its time that the struggling disaster management services get supported and facilitated by new technology of combining Artificial Intelligence (AI) and Machine Learning (ML) with Data Analytics Technologies (DAT)to serve people and government in disaster management. AI and ML have advanced to a state where they could be utilized for many operations in disaster risk reduction. Even though many disasters cannot be prevented and a number of them are blind natural disasters yet through an appropriate application of AI and ML quick predictions, vulnerability identification and classification of relief and rescue operations could be achieved.
Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent. The Handbook of Research on Advanced Research on Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
With the proliferation of GPS devices in daily life, trajectory data that records where and when people move is now readily available on a large scale. As one of the most typical representatives, it has now become widely recognized that taxi trajectory data provides rich opportunities to enable promising smart urban services. Yet, a considerable gap still exists between the raw data available, and the extraction of actionable intelligence. This gap poses fundamental challenges on how we can achieve such intelligence. These challenges include inaccuracy issues, large data volumes to process, and sparse GPS data, to name but a few. Moreover, the movements of taxis and the leaving trajectory data are the result of a complex interplay between several parties, including drivers, passengers, travellers, urban planners, etc. In this book, we present our latest findings on mining taxi GPS trajectory data to enable a number of smart urban services, and to bring us one step closer to the vision of smart mobility. Firstly, we focus on some fundamental issues in trajectory data mining and analytics, including data map-matching, data compression, and data protection. Secondly, driven by the real needs and the most common concerns of each party involved, we formulate each problem mathematically and propose novel data mining or machine learning methods to solve it. Extensive evaluations with real-world datasets are also provided, to demonstrate the effectiveness and efficiency of using trajectory data. Unlike other books, which deal with people and goods transportation separately, this book also extends smart urban services to goods transportation by introducing the idea of crowdshipping, i.e., recruiting taxis to make package deliveries on the basis of real-time information. Since people and goods are two essential components of smart cities, we feel this extension is bot logical and essential. Lastly, we discuss the most important scientific problems and open issues in mining GPS trajectory data.
The exploitation of theoretical results in knowledge representation, language standardization by W3C and data publication initiatives such as Linked Open Data have given a level of concreteness to the field of ontology research. In light of these recent outcomes, ontology development has also found its way to the forefront, benefiting from years of R&D on development tools. Semi-Automatic Ontology Development: Processes and Resources includes state-of-the-art research results aimed at the automation of ontology development processes and the reuse of external resources becoming a reality, thus being of interest for a wide and diversified community of users. This book provides a thorough overview on the current efforts on this subject and suggests common directions for interested researchers and practitioners.
Since its inception, fuzzy logic has attracted an incredible amount of interest, and this interest continues to grow at an exponential rate. As such, scientists, researchers, educators and practitioners of fuzzy logic continue to expand on the applicability of what and how fuzzy can be utilised in the real-world. In this book, the authors present key application areas where fuzzy has had significant success. The chapters cover a plethora of application domains, proving credence to the versatility and robustness of a fuzzy approach. A better understanding of fuzzy will ultimately allow for a better appreciation of fuzzy. This book provides the reader with a varied range of examples to illustrate what fuzzy logic can be capable of and how it can be applied. The text will be ideal for individuals new to the notion of fuzzy, as well as for early career academics who wish to further expand on their knowledge of fuzzy applications. The book is also suitable as a supporting text for advanced undergraduate and graduate-level modules on fuzzy logic, soft computing, and applications of AI.
The book discusses the opportunities and challenges of managing knowledge in the new reality of Industry 4.0. Addressing paradigmatic changes in value creation due to the development of digital technologies applied to manufacturing (additive manufacturing, IoT, robotics, etc.), it includes theoretical and empirical contributions on how Industry 4.0 technologies allow firms to create and exploit knowledge. The carefully selected expert contributions highlight the potential of these technologies in acquiring knowledge from a larger number of sources and examine approaches to innovation, organization of activities, and stakeholder development in the context of this next industrial revolution.
This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP's performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future. Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.
Database technology can be used for various ends, ranging from promotion of democracy to strengthening of nationalism to shoring up authoritarian regimes through misinformation. Its use affects every layer of society: from individuals to households to local governments, and is a consuming issue in the United States Governments stance on privacy, security, and technology.
Healthcare Information Systems and Informatics: Research and Practices compiles estimable knowledge on the research of information systems and informatics applications in the healthcare industry. This book addresses organizational issues, including technology adoption, diffusion, and acceptance, as well as cost benefits and cost effectiveness, of advancing health information systems and informatics applications as innovative forms of investment in healthcare. Rapidly changing technology and the complexity of its applications make this book an invaluable resource to researchers and practitioners in the healthcare fields.
The book offers a comprehensive survey of interval-valued intuitionistic fuzzy sets. It reports on cutting-edge research carried out by the founder of the intuitionistic fuzzy sets, Prof. Krassimir Atanassov, giving a special emphasis to the practical applications of this extension. A few interesting case studies, such as in the area of data mining, decision making and pattern recognition, among others, are discussed in detail. The book offers the first comprehensive guide on interval-valued intuitionistic fuzzy sets. By providing the readers with a thorough survey and important practical details, it is expected to support them in carrying out applied research and to encourage them to test the theory behind the sets for new advanced applications. The book is a valuable reference resource for graduate students and researchers alike.
Before the integration of expert systems in biomedical science, complex problems required human expertise to solve them through conventional procedural methods. Advancements in expert systems allow for knowledge to be extracted when no human expertise is available and increases productivity through quick diagnosis. Expert System Techniques in Biomedical Science Practice is an essential scholarly resource that contains innovative research on the methods by which an expert system is designed to solve complex problems through the automation of decision making through the use of if-then-else rules rather than conventional procedural methods. Featuring coverage on a broad range of topics such as image processing, bio-signals, and cognitive AI, this book is a vital reference source for computer engineers, information technologists, biomedical engineers, data-processing specialists, medical professionals, and industrialists within the fields of biomedical engineering, pervasive computing, and natural language processing.
Modelling of information is necessary in developing information systems. Information is acquired from many sources, by using various methods and tools. It must be recognized, conceptualized, and conceptually organized efficiently so that users can easily understand and use it. Modelling is needed to understand, explain, organize, predict, and reason on information. It also helps to master the role and functions of components of information systems. Modelling can be performed with many different purposes in mind, at different levels, and by using different notions and different background theories. It can be made by emphasizing users' conceptual understanding of information on a domain level, on an algorithmic level, or on representation levels. On each level, the objects and structures used on them are different, and different rules govern the behavior on them. Therefore the notions, rules, theories, languages, and methods for modelling on different levels are also different. It will be useful if we can develop theories and methodologies for modelling, to be used in different situations, because databases, knowledge bases, and repositories in knowledge management systems, developed on the basis of models and used to technically store information, are growing day by day. In this publication, the interest is focused on modelling of information, and one of the central topics is modelling of time. Scientific and technical papers of high quality are brought together in this book.
This book presents explorable XR environments-their rationale, concept, architectures as well as methods and tools for spatial-temporal composition based on domain knowledge, including geometrical, presentational, structural and behavioral elements. Explorable XR environments enable monitoring, analyzing, comprehending, examining and controlling users' and objects' behavior and features as well as users' skills, experience, interests and preferences. The E-XR approach proposed in this book relies on two main pillars. The first is knowledge representation technologies, such as logic programming, description logics and the semantic web, which permit automated reasoning and queries. The second is imperative programming languages, which are a prevalent solution for building XR environments. Potential applications of E-XR are in a variety of domains, e.g., education, training, medicine, design, tourism, marketing, merchandising, engineering and entertainment. The book's readers will understand the emerging domain of explorable XR environments with their possible applications. Special attention is given to an in-depth discussion of the field with taxonomy and classification of the available related solutions. Examples and design patterns of knowledge-based composition and exploration of XR behavior are provided, and an extensive evaluation and analysis of the proposed approach is included. This book helps researchers in XR systems, 3D modeling tools and game engines as well as lecturers and students who search for clearly presented information supported by use cases. For XR and game programmers as well as graphic designers, the book is a valuable source of information and examples in XR development. Professional software and web developers may find the book interesting as the proposed ideas are illustrated by rich examples demonstrating design patterns and guidelines in object-oriented, procedural and declarative programming.
This contributed book focuses on major aspects of statistical quality control, shares insights into important new developments in the field, and adapts established statistical quality control methods for use in e.g. big data, network analysis and medical applications. The content is divided into two parts, the first of which mainly addresses statistical process control, also known as statistical process monitoring. In turn, the second part explores selected topics in statistical quality control, including measurement uncertainty analysis and data quality. The peer-reviewed contributions gathered here were originally presented at the 13th International Workshop on Intelligent Statistical Quality Control, ISQC 2019, held in Hong Kong on August 12-14, 2019. Taken together, they bridge the gap between theory and practice, making the book of interest to both practitioners and researchers in the field of statistical quality control.
This book is a timely collection of chapters that present the state of the art within the analysis and application of big data. Working within the broader context of big data, this text focuses on the hot topics of social network modelling and analysis such as online dating recommendations, hiring practices, and subscription-type prediction in mobile phone services. Manuscripts are expanded versions of the best papers presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'2016), which was held in August 2016. The papers were among the best featured at the meeting and were then improved and extended substantially. Social Network Based Big Data Analysis and Applications will appeal to students and researchers in the field.
One aspect of common sense reasoning is reasoning about normal
cases, e.g. a physician will first try to interpret symptoms by a
common disease, and will take more exotic possibilities only later
into account. Such "normality" can be encoded, e.g. by
The book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation and anthropic-oriented computing that were originally presented at the 14th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2020), being held as a Virtual Conference in June 17-19, 2020. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems and nature inspired manufacturing, all of which contribute to the modern digital economy.
Intelligent methods are used in distributed environments in countless ways, with examples such as propagation, communication, collaboration, and cooperation. With the abundant purposes for intelligence in distributed systems, it is pertinent for researchers, technicians, and students in various areas of computer science to discover the most current and definitive advances in the field.""Intelligence Integration in Distributed Knowledge Management"" provides recent technologies and practices in intelligence for distributed systems, while covering major aspects of the agent based systems. This book is a must for those striving to enhance their understanding of distributed knowledge management and extend their ideas of cooperation using for numerous real-world problems.
This book focuses on data and how modern business firms use social data, specifically Online Social Networks (OSNs) incorporated as part of the infrastructure for a number of emerging applications such as personalized recommendation systems, opinion analysis, expertise retrieval, and computational advertising. This book identifies how in such applications, social data offers a plethora of benefits to enhance the decision making process. This book highlights that business intelligence applications are more focused on structured data; however, in order to understand and analyse the social big data, there is a need to aggregate data from various sources and to present it in a plausible format. Big Social Data (BSD) exhibit all the typical properties of big data: wide physical distribution, diversity of formats, non-standard data models, independently-managed and heterogeneous semantics but even further valuable with marketing opportunities. The book provides a review of the current state-of-the-art approaches for big social data analytics as well as to present dissimilar methods to infer value from social data. The book further examines several areas of research that benefits from the propagation of the social data. In particular, the book presents various technical approaches that produce data analytics capable of handling big data features and effective in filtering out unsolicited data and inferring a value. These approaches comprise advanced technical solutions able to capture huge amounts of generated data, scrutinise the collected data to eliminate unwanted data, measure the quality of the inferred data, and transform the amended data for further data analysis. Furthermore, the book presents solutions to derive knowledge and sentiments from BSD and to provide social data classification and prediction. The approaches in this book also incorporate several technologies such as semantic discovery, sentiment analysis, affective computing and machine learning. This book has additional special feature enriched with numerous illustrations such as tables, graphs and charts incorporating advanced visualisation tools in accessible an attractive display.
In real management situations, uncertainty is inherently present in decision making. As such, it is increasingly imperative to research and develop new theories and methods of fuzzy sets. Theoretical and Practical Advancements for Fuzzy System Integration is a pivotal reference source for the latest scholarly research on the importance of expressing and measuring fuzziness in order to develop effective and practical decision making models and methods. Featuring coverage on an expansive range of perspectives and topics, such as fuzzy logic control, intuitionistic fuzzy set theory, and defuzzification, this book is ideally designed for academics, professionals, and researchers seeking current research on theoretical frameworks and real-world applications in the area of fuzzy sets and systems.
This book explores recent perspectives on type-2 fuzzy sets. Written as a tribute to Professor Jerry Mendel for his pioneering works on type-2 fuzzy sets and systems, it covers a wide range of topics, including applications to the Go game, machine learning and pattern recognition, as well as type-2 fuzzy control and intelligent systems. The book is intended as a reference guide for the type-2 fuzzy logic community, yet it aims also at other communities dealing with similar methods and applications.
At the centre of the methodology used in this book is STEM learning variability space that includes STEM pedagogical variability, learners' social variability, technological variability, CS content variability and interaction variability. To design smart components, firstly, the STEM learning variability space is defined for each component separately, and then model-driven approaches are applied. The theoretical basis includes feature-based modelling and model transformations at the top specification level and heterogeneous meta-programming techniques at the implementation level. Practice includes multiple case studies oriented for solving the task prototypes, taken from the real world, by educational robots. These case studies illustrate the process of gaining interdisciplinary knowledge pieces identified as S-knowledge, T-knowledge, E-knowledge, M-knowledge or integrated STEM knowledge and evaluate smart components from the pedagogical and technological perspectives based on data gathered from one real teaching setting. Smart STEM-Driven Computer Science Education: Theory, Methodology and Robot-based Practices outlines the overall capabilities of the proposed approach and also points out the drawbacks from the viewpoint of different actors, i.e. researchers, designers, teachers and learners. |
You may like...
Information Technology Trends for a…
Francisco J. Garcia Penalvo
Hardcover
R5,616
Discovery Miles 56 160
Probabilistic and Causal Inference - The…
Hector Geffner, Rina Dechter, …
Hardcover
R4,097
Discovery Miles 40 970
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,702
Discovery Miles 137 020
Deep Learning Applications for…
Monica R. Mundada, Seema S., …
Hardcover
R7,022
Discovery Miles 70 220
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,692
Discovery Miles 136 920
Disinformation, Misinformation, and Fake…
Kai Shu, Suhang Wang, …
Hardcover
R4,589
Discovery Miles 45 890
|