![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
This book brings together a comprehensive and up-to-date presentation of the main scientific and technological aspects of limestone mining. The book discusses how to excavate limestone from surface mines including the nuances of production and commercial aspects.It addresses topical issues related with the quarrying of limestone and environmental protection measures adopted in mining and manufacturing. The chapters in this book describe planning and designing of mining processes to produce limestone that meets with market requirements and customer specifications. The book also discusses the environmental stresses caused by mining as an industrial activity and their ramifications and remedies. The book includes case studies from different geo-mining environments. The contents of this book will be useful to professionals, researchers, and policy makers alike.
This book introduces recent progress in preparation and application of core-shell and yolk-shell structures for attractive design of catalyst materials. Core-shell nanostructures with active core particles covered directly with an inert shell can perform as highly active and selective catalysts with long lifetimes. Yolk-shell nanostructures consisting of catalytically active core particles encapsulated by hollow materials are an emerging class of nanomaterials. The enclosed void space is expected to be useful for encapsulation and compartmentation of guest molecules, and the outer shell acts as a physical barrier to protect the guest molecules from the surrounding environment. Furthermore, the tunability and functionality in the core and the shell regions can offer new catalytic properties, rendering them attractive platform materials for the design of heterogeneous catalysts. This book describes the recent development of such unique nanostructures to design effective catalysts which can lead to new chemical processes. It provides an excellent guide for design and application of core-shell and yolk-shell structured catalysts for a wide range of readers working on design of attractive catalysts, photocatalysts, and electrocatalysts for energy, environmental, and green chemical processes.
This book covers the selection of nanocomposite supercapacitor materials. It describes the most important criteria behind the selection of materials for the electrode, electrolytes, separator and current collectors, which comprise the key components of supercapacitors for advanced energy storage. It discusses the influence on each material on the unique electrochemical properties of nanocomposite supercapacitors with respect to their energy storage mechanism and stability under extreme and unpredictable conditions. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
The textile waste water is well known to contain many detrimental impacts in terms of its pollutants and the issues pertaining to its discharged without being untreated, or even discharged without meeting all stipulated parameters. There is an ample amount of advancements in treating textile waste water in a sustainable way and this book comprehends the same with eight insightful chapters. The aim of this book is to deal with the advances in sustainable waste water treatments with topics Conjugated Polymer Coated Novel Bio-adsorbents for Wastewater Treatment , Advanced Oxidation Processes (AOP) - Effective innovative treatment methods to degrade textile dye effluent, etc.
Micro-Raman Spectroscopy introduces readers to the theory and application of Raman microscopy. Raman microscopy is used to study the chemical signature of samples with little preperation in a non-destructive manner. An easy to use technique with ever increasing technological advances, Micro-Raman has significant application for researchers in the fields of materials science, medicine, pharmaceuticals, and chemistry.
This book gathers the peer-reviewed proceedings of the 14th International Symposium, PRADS 2019, held in Yokohama, Japan, in September 2019. It brings together naval architects, engineers, academic researchers and professionals who are involved in ships and other floating structures to share the latest research advances in the field. The contents cover a broad range of topics, including design synthesis for ships and floating systems, production, hydrodynamics, and structures and materials. Reflecting the latest advances, the book will be of interest to researchers and practitioners alike.
This volume gathers the latest advances and innovations in the field of structural health monitoring, as presented at the 8th Civil Structural Health Monitoring Workshop (CSHM-8), held on March 31-April 2, 2021. It discusses emerging challenges in civil SHM and more broadly in the fields of smart materials and intelligent systems for civil engineering applications. The contributions cover a diverse range of topics, including applications of SHM to civil structures and infrastructures, innovative sensing solutions for SHM, data-driven damage detection techniques, nonlinear systems and analysis techniques, influence of environmental and operational conditions, aging structures and infrastructures in hazardous environments, and SHM in earthquake prone regions. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
This book introduces readers to experimental techniques of general utility that can be used to practically and reliably determine nucleation rates. It also covers the basics of gas hydrates, phase equilibria, nucleation theory, crystal growth, and interfacial gaseous states. Given its scope, the book will be of interest to graduate students and researchers in the field of hydrate nucleation. The formation of gas hydrates is a first-order phase transition that begins with nucleation. Understanding nucleation is of interest to many working in the chemical and petroleum industry, since nucleation, while beneficial in many chemical processes, is also a concern in terms of flow assurance for oil and natural gas pipelines. A primary difficulty in the investigation of gas hydrate nucleation has been researchers' inability to determine and compare the nucleation rates of gas hydrates across systems with different scales and levels of complexity, which in turn has limited their ability to study the nucleation process itself. This book introduces readers to experimental techniques that can be used to practically and reliably determine the nucleation rates of gas hydrate systems. It also covers the basics of gas hydrates, phase equilibria, nucleation theory, crystal growth, and interfacial gaseous states. Given its scope, the book will be of interest to graduate students and researchers in the field of hydrate nucleation.
In today's global context, there has been extensive research conducted in reducing harmful emissions to conserve and protect our environment. In the automobile and power generation industries, diesel engines are being utilized due to their high level of performance and fuel economy. However, these engines are producing harmful pollutants that contribute to several global threats including greenhouse gases and ozone layer depletion. Professionals have begun developing techniques to improve the performance and reduce emissions of diesel engines, but significant research is lacking in this area. Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines is a pivotal reference source that provides vital research on technical and environmental enhancements to the emission and combustion characteristics of diesel engines. While highlighting topics such as biodiesel emulsions, nanoparticle additives, and mathematical modeling, this publication explores the potential additives that have been incorporated into the performance of diesel engines in order to positively affect the environment. This book is ideally designed for chemical and electrical engineers, developers, researchers, power generation professionals, mechanical practitioners, scholars, ecologists, scientists, graduate students, and academicians seeking current research on modern innovations in fuel processing and environmental pollution control.
This book offers a concise primer on energy conversion efficiency and the Shockley-Queisser limit in single p-n junction solar cells. It covers all the important fundamental physics necessary to understand the conversion efficiency, which is indispensable in studying, investigating, analyzing, and designing solar cells in practice. As such it is valuable as a supplementary text for courses on photovoltaics, and bridges the gap between advanced topics in solar cell device engineering and the fundamental physics covered in undergraduate courses. The book first introduces the principles and features of solar cells compared to those of chemical batteries, and reviews photons, statistics and radiation as the physics of the source energy. Based on these foundations, it clarifies the conversion efficiency of a single p-n junction solar cell and discusses the Shockley-Queisser limit. Furthermore, it looks into various concepts of solar cells for breaking through the efficiency limit given in the single junction solar cell and presents feasible theoretical predictions. To round out readers' knowledge of p-n junctions, the final chapter also reviews the essential semiconductor physics. The foundation of solar cell physics and engineering provided here is a valuable resource for readers with no background in solar cells, such as upper undergraduate and master students. At the same time, the deep insights provided allow readers to step seamlessly into other advanced books and their own research topics.
Volume20 of the "Handbook of Magnetic Materials," as the preceding
volumes, has a dual purpose. As a textbook it is intended to help
those who wish to be introduced to a given topic in the field of
magnetism without the need to read the vast amount of literature
published. As a work of reference it is intended for scientists
active in magnetism research. To this dual purpose, Volume20 is
composed of topical review articles written by leading authorities.
In each of these articles an extensive description is given in
graphical as well as in tabular form, much emphasis being placed on
the discussion of the experimental material in the framework of
physics, chemistry and material science. It provides readers with
novel trends and achievements in magnetism.
This collection presents fundamentals and the current status of friction stir welding (FSW) and solid-state friction stir processing of materials, and provides researchers and engineers with an opportunity to review the current status of the friction stir related processes and discuss the future possibilities. Contributions cover various aspects of friction stir welding and processing including their derivative technologies. Topics include but are not limited to: * derivative technologies * high-temperature lightweight applications * industrial applications * dissimilar alloys and/or materials * controls and nondestructive examination * simulation * characterization
The primary focus of this book, accordingly, is to provide insight into the fundamentals, applications, manufacturing aspects and properties (mechanical, thermal, electrical etc.) of metal foams. Their potential applications in various small- as well as large-scale industries are highlighted. The present book also focuses on aspects of designing simple structures by taking into account loading conditions under tensile, compressive or torsional stress for metals and their foams. In view of theoretical analysis, clear explanation is provided as how metal foams can exhibit better structural properties when compared to their parent metal. It is hoped that the present book, in view of significant application potential of metal foams in near future, will be extremely useful to students and academicians in tertiary institutes and researchers working in research labs who are attempting to find lightweight solutions.
Microencapsulations may be found in a number of fields like medicine, drug delivery, biosensing, agriculture, catalysis, intelligent microstructures and in many consumer goods. This new edition of Microencapsulation revises chapters to address the newest innovations in fields and adds three new chapters on the uses of microencapsulations in medicine, agriculture, and consumer products.
This book summarizes all different fields of cotton fiber, including genetics, fiber chemistry, soft materials, textile, and fashion engineering. It also contains some new applications such as biomaterials, nanocoated smart fabrics, and functional textiles. Moreover, the significant improvement recently in gene modification and gene technology is introduced. This book discusses all these aspects in a more straightforward way, and new illustrations will help readers to understand the contents. It is intended for undergraduate and graduate students who are interested in cotton science and processing technologies, researchers investigating the updated applications of cotton in various fields as well as industrialists who want to have a quick review of the cotton and its different stages.
This book shows in a comprehensive presentation how Bond Graph methodology can support model-based control, model-based fault diagnosis, fault accommodation, and failure prognosis by reviewing the state-of-the-art, presenting a hybrid integrated approach to Bond Graph model-based fault diagnosis and failure prognosis, and by providing a review of software that can be used for these tasks. The structured text illustrates on numerous small examples how the computational structure superimposed on an acausal bond graph can be exploited to check for control properties such as structural observability and control lability, perform parameter estimation and fault detection and isolation, provide discrete values of an unknown degradation trend at sample points, and develop an inverse model for fault accommodation. The comprehensive presentation also covers failure prognosis based on continuous state estimation by means of filters or time series forecasting. This book has been written for students specializing in the overlap of engineering and computer science as well as for researchers, and for engineers in industry working with modelling, simulation, control, fault diagnosis, and failure prognosis in various application fields and who might be interested to see how bond graph modelling can support their work. Presents a hybrid model-based, data-driven approach to failure prognosis Highlights synergies and relations between fault diagnosis and failure prognostic Discusses the importance of fault diagnosis and failure prognostic in various fields
Approximation Methods in Engineering and Science covers fundamental and advanced topics in three areas: Dimensional Analysis, Continued Fractions, and Stability Analysis of the Mathieu Differential Equation. Throughout the book, a strong emphasis is given to concepts and methods used in everyday calculations. Dimensional analysis is a crucial need for every engineer and scientist to be able to do experiments on scaled models and use the results in real world applications. Knowing that most nonlinear equations have no analytic solution, the power series solution is assumed to be the first approach to derive an approximate solution. However, this book will show the advantages of continued fractions and provides a systematic method to develop better approximate solutions in continued fractions. It also shows the importance of determining stability chart of the Mathieu equation and reviews and compares several approximate methods for that. The book provides the energy-rate method to study the stability of parametric differential equations that generates much better approximate solutions.
This book describes analytical methods for modelling drop evaporation, providing the mathematical tools needed in order to generalise transport and constitutive equations and to find analytical solutions in curvilinear coordinate systems. Transport phenomena in gas mixtures are treated in considerable detail, and the basics of differential geometry are introduced in order to describe interface-related transport phenomena. One chapter is solely devoted to the description of sixteen different orthogonal curvilinear coordinate systems, reporting explicitly on the forms of their differential operators (gradient, divergent, curl, Laplacian) and transformation matrices. The book is intended to guide the reader from mathematics, to physical descriptions, and ultimately to engineering applications, in order to demonstrate the effectiveness of applied mathematics when properly adapted to the real world. Though the book primarily addresses the needs of engineering researchers, it will also benefit graduate students.
Ceramics are a versatile material, more so than is widely known. They are thermal resistant, poor electrical conductors, insulators against nuclear radiation, and not easily damaged, making ceramics a key component in many industrial processes. MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments investigates a new class of ultra-durable ceramic materials, which exhibit characteristics of both ceramics and metals. Readers will explore recent advances in the manufacturing of ceramic materials that improve their durability and other physical properties, enhancing their overall usability and cost-effectiveness. This book will be of primary use to researchers, academics, and practitioners in chemical, mechanical, and electrical engineering. This book is part of the Research Essentials collection.
This book aims at identifying novel advanced materials of extreme wetting properties (MEWP) for practical, industrial applications. The state-of-the art superhdyrophobic, superhdyrophilic, superoleophobic, superoleophilic, and superomniphobic materials, that are MEWP, with respect to their technological and emerging industrial applications are discussed in this book. MEWP offer new perspectives providing numerous potential applications. Hence, these advanced MEWP have the potential to lead to a new generation of products and devices with unique properties and functionalities. Despite the large scientific progress on MEWP there are still some obstacles which have to be solved to make these materials available for real life applications. Recent advances on the production strategies, including methods and materials, of MEWP has shown that the durability and sustainability obstacles can be addressed thus offering the possibility for industrial exploitation. MEWP with wettabilities ranging from superhydrophobicity to superhydrophilicity provide promising avenues for several and important applications, which sometimes are crucial for the humankind. This book also discusses a large variety of other potential applications of MEWP, thus providing new ideas to scientists and engineers for further exploitation of these novel materials. Moreover, the whole spectrum of the recent technological developments, current research progress, future outlook, and the modern trends in the applications of MEWP are discussed in a consistent approach.
This textbook, now in an expanded third edition, emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics: Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, introductions to Lagrangian mechanics and the covariant formulation of electrodynamics are provided in appendices. This third edition includes 60 new exercises, new and improved illustrations, and new material on interpretations of quantum mechanics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.
The Phase Field Crystal (PFC) model incorporates microscopic structural details into a mesoscopic continuum theory. Methods for fast propagation of PFC interfaces are discussed in this book. They can handle a wide range of thermal gradients, supersaturations and supercoolings, including applications such as selective laser melting. The reader will find theoretical treatment in the first half, while the latter half discusses numerical models. |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|