![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
Biomaterials for Skin Repair and Regeneration examines a range of materials and technologies used for regenerating or repairing skin. With a strong focus on biomaterials and scaffolds, the book also examines the testing and evaluation pathway for human clinical trials. Beginning by introducing the fundamentals on skin tissue, the book goes on to describe contemporary technology used in skin repair as well as currently available biomaterials suitable for skin tissue repair and regeneration. Skin tissue engineering and the ideal requirements to take into account when developing skin biomaterials are discussed, followed by information on the individual materials used for skin repair and regeneration. As evaluation of biomaterials in animal models is mandatory before proceeding into human clinical trials, the book also examines the different animal models available. With a strong focus on materials, engineering, and application, this book is a valuable resource for materials scientists, skin biologists, and bioengineers with an interest in tissue engineering, regeneration, and repair of skin.
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction, Second Edition provides a concise, but thorough exposition of fundamental concepts in the field of pharmaceutical aerosols. This revised edition will allow researchers in the field to gain a thorough understanding of the field from first principles, allowing them to understand, design, develop and improve inhaled pharmaceutical aerosol devices and therapies. Chapters consider mechanics and deposition, specifically in the respiratory tract, while others discuss the mechanics associated with the three existing types of pharmaceutical inhalation devices. This text will be very useful for academics and for courses taught at both undergraduate and graduate levels. Because of the interdisciplinary nature of this book, it will also serve a wide audience that includes engineers and scientists involved with inhaled aerosol therapies.
Different numerical and analytical methods have been employed to find the solution of governing equations for nanofluid flow and heat transfer. Applications of Nanofluid Transportation and Heat Transfer Simulation provides emerging research exploring the theoretical and practical aspects and applications of heat and nanofluid transfer. With practical examples and proposed methodology, it features coverage on a broad range of topics such as nanoparticles, electric fields, and hydrothermal behavior, making it an ideal reference source for engineers, researchers, graduate students, professionals, and academics.
Welding the Inconel 718 Superalloy: Reduction of Micro-segregation and Laves Phases explores the day-to-day welding business in Alloy 718 and presents solutions to avoid or minimize micro-segregation. It considers the limitations of changing from lab scale models to actual production models and presents new technologies with proven experimental background. Various case studies are presented within the text, as well as proposed solutions backed by experimental evidence. Items previewed in this edition include enhanced cooling rates in the GTA welding process with cryogenic cooling and enhanced dendrite refinement using modified pulse waveform. This work will be useful to researchers from the aerospace, space, power generation, nuclear, and chemical industries, as well as students interested in superalloys and welding.
Exposure to Engineered Nanomaterials in the Environment provide a new, holistic framework for testing and evaluating the potential benefits and risks of engineered nanomaterials (ENMs), including their potential socioeconomic impacts, ethical issues and consumers' expectations and fears. The book covers nanomaterial presence in various environments, agroecosystems and other areas within the human sphere of actions. The book includes sections on (i) Chemical, physical and biological properties, (ii) Presence and diffusion of ENMs in human environments, agriculture, food and drug products, (iii) ENMs as a pillar in biological and medical research, and (iv) Social and regulatory issues emerging from years of application. The book is designed to increase awareness to key end-users and stakeholders, including food producers and processors, industry, representatives of society and consumers, and those looking to implement an accurate and effective risk analysis procedure that promotes the sustainable use of nanotechnology.
Nanomaterials Synthesis: Design, Fabrication and Applications combines the present and emerging trends of synthesis routes of nanomaterials with the incorporation of various technologies. The book covers the new trends and challenges in the synthesis and surface engineering of a wide range of nanomaterials, including emerging technologies used for their synthesis. Significant properties, safety and sustainability and environmental impacts of the synthesis routes are explored. This book is an important information source that will help materials scientists and engineers who want to learn more about how different classes of nanomaterials are designed.
Nanomaterials-Based Coatings: Fundamentals and Applications presents the fundamental concepts and applications of nanomaterial-based coatings in anticorrosion, antiwear, antibacterial, antifungal, self-cleaning, superhydrophobic, super hard, super heat resistance, solar reflective, photocatalytic and radar absorbing coatings. It is an important resource for those seeking to understand the underlying phenomenal and fundamental mechanisms through which nanoparticles interact with polymeric and metallic matrices to create stronger coatings. As nanomaterials-enforced coatings are smarter, stronger and more durable, the information listed in this book will helps readers understand their usage and further applications.
Advanced Dental Biomaterials is an invaluable reference for researchers and clinicians within the biomedical industry and academia. The book can be used by both an experienced researcher/clinician learning about other biomaterials or applications that may be applicable to their current research or as a guide for a new entrant into the field who needs to gain an understanding of the primary challenges, opportunities, most relevant biomaterials, and key applications in dentistry.
Metals for Biomedical Devices, Second Edition, has been fully updated and builds upon the success of its first edition, discussing the latest techniques in metal processing methods and the behavior of this important material. Initial chapters review the current status and selection of metals for biomedical devices. Subsequent chapters cover mechanical behavior, degradation and testing, corrosion, wear testing and biocompatibility, the processing of metals for biomedical applications, including topics such as forging metals and alloys, surface treatment, coatings and sterilization. Chapters in the final section discuss the clinical applications of metals, such as cardiovascular, orthopedic and new generation biomaterials. With its distinguished editor and team of expert contributors, this book is a standard reference for materials scientists, researchers and engineers working in the medical devices industry and academia.
Functional Nanostructured Interfaces for Environmental and Biomedical Applications provides an overview on the characteristics of nanostructured interfaces and their processing technologies for a wide range of applications in the sensing, photocatalytic and bioengineering areas. The book focuses on the fundamentals of multifunctional nanostructured interfaces and their associated technologies, including versatile technologies, such as colloidal lithography, scanning probe techniques and laser nanostructuring, which can be used to obtain multifunctional 2D and 3D nanotextured interfaces. The book provides multidisciplinary chapters, summarizes the current status of the field, and covers important scientific and technological developments made over past decades. As such, it is an invaluable reference to those working in the design of novel nanostructured materials.
Theranostic Bionanomaterials is an invaluable study of recent advances and trends in the development and application of functional bionanomaterials for theranostic applications. This book describes the design and characterization of nanomaterials which exhibit distinctive physical, chemical and biological properties and discusses how these functional nanomaterials enable the precise manipulation of architectural, physical and biochemical cell microenvironments in vitro. In addition, it covers how they can act as the carriers of diagnostic or therapeutic agents, thus providing new pathways or strategies for disease diagnosis and treatment. Specific chapters discuss protein delivery, drug delivery, tissue regeneration, bioimaging, biodetection, and much more. This book will be a critical resource for those involved in cutting-edge research in theranostics bionanomaterial.
Lignocellulose for Future Bioeconomy discusses the conversion and utilization of lignocellulosic biomass. This book focuses on the utilization of lignocelluloses for various products, including biopolymers, bionanomaterials and bioproducts. Recent findings in scientific investigation, engineering, product development, economic and lifecycle analysis are discussed, as are current synthesis technologies and potential applications. The book progresses from a discussion of the potential sources of biomass, to the refinement and processing of materials. A sampling of various sustainability issues faced by industries in their production methods and a look at real world examples of the use of lignocellulose-based materials in the bioeconomy round out the discussion.
Self-Cleaning of Surfaces and Water Droplet Mobility deals with the self-cleaning of hydrophobic surfaces. Chapters cover the basics of wetting states of fluids and surface characteristics in terms of texture topology and free energy. The self-cleaning aspects of surfaces, such as various synthesizing and fabrication processes are then introduced and discussed, along with environmental dust properties, including elemental compositions, particle sizes and shapes, and their chemo-mechanics characteristics. In addition, mud formation in humid air, as well as ambient and dry mud adhesion on optically transparent surfaces is explored, as is water droplet dynamics on hydrophilic and hydrophobic surfaces, amongst other topics. The book fills the gap between the physical fundamentals of surface energy and texture characteristics for practical applications of surface cleaning and provides a basic understanding of the self-cleaning of surfaces that will be idea for academics, researchers and students.
In this book, cancer theranostics applications of magnetic iron oxide nanoparticles are overviewed in details. Moreover, their synthesis, characterization, multifunctionality, disease targeting, biodistribution, pharmacokinetics and toxicity have been briefly highlighted. Finally, we have mentioned the current examples of clinical trials of magnetic nanoparticles in cancer theranostics along with their future scopes and challenges.
An Introduction to Nuclear Waste Immobilisation, Third Edition examines nuclear waste issues, including natural levels of radionuclides in the environment, the geological disposal of waste-forms, and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. The book has been updated to include a discussion of the disposal of nuclear waste from non-energy sources, also adding a chapter on the nuclear fuel cycle. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices, such as bitumen. The book's final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of resources needed to understand and correctly immobilize nuclear waste.
Creep and Fatigue in Polymer Matrix Composites, Second Edition, updates the latest research in modeling and predicting creep and fatigue in polymer matrix composites. The first part of the book reviews the modeling of viscoelastic and viscoplastic behavior as a way of predicting performance and service life. Final sections discuss techniques for modeling creep rupture and failure and how to test and predict long-term creep and fatigue in polymer matrix composites.
Graphene: Important Results and Applications provides an overview on the latest research in graphene production and applications. The most advanced methods of production, including chemical vapor deposition, reduction of graphene oxide, and detonation reaction are explored, as is current research results on the unique nature of graphene and its types, including morphology and thickness, mechanical properties, electrical conductivity, elastic properties of 2D and 3D structures, and more. Chapters covering the dispersion of graphene into the polymer matrix and chemical modifications and their potential applications are also featured. The book concludes with sections focusing on current and future applications.
Nanotube Superfiber Materials: Science, Manufacturing, Commercialization, Second Edition, helps engineers and entrepreneurs understand the science behind the unique properties of nanotube fiber materials, how to efficiency and safely produce them, and how to transition them into commercial products. Each chapter gives an account of the basic science, manufacturing, properties and commercial potential of a specific nanotube material form and its application. New discoveries and technologies are explained, along with experiences in handing-off the improved materials to industry. This book spans nano-science, nano-manufacturing, and the commercialization of nanotube superfiber materials. As such, it opens up the vast commercial potential of nanotube superfiber materials. Applications for nanotube superfiber materials cut across most of the fields of engineering, including spacecraft, automobiles, drones, hyperloop tracks, water and air filters, infrastructure, wind energy, composites, and medicine where nanotube materials enable development of tiny machines that can work inside our bodies to diagnose and treat disease.
Computational Techniques for Multiphase Flows, Second Edition, provides the latest research and theories covering the most popular multiphase flows The book begins with an overview of the state-of-the-art techniques for multiple numerical methods in handling multiphase flow, compares them, and finally highlights their strengths and weaknesses. In addition, it covers more straightforward, conventional theories and governing equations in early chapters, moving on to the more modern and complex computational models and tools later in the book. It is therefore accessible to those who may be new to the subject while also featuring topics of interest to the more experienced researcher. Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for understanding fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, automotive, energy, aerospace and pharmaceutical industries. This revised edition is an ideal reference for scientists, MSc students and chemical and mechanical engineers in these areas.
|
![]() ![]() You may like...
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Modern Dynamic Reliability Analysis for…
Anatoly Lisnianski, Ilia Frenkel, …
Hardcover
R5,089
Discovery Miles 50 890
Geometry and Statistics, Volume 46
Frank Nielsen, Arni S.R. Srinivasa Rao, …
Hardcover
The Theory of Queuing Systems with…
Alexander N. Dudin, Valentina I. Klimenok, …
Hardcover
R2,944
Discovery Miles 29 440
Classical and Modern Branching Processes
Krishna B Athreya, Peter Jagers
Hardcover
R3,079
Discovery Miles 30 790
|