![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Observatories, equipment & methods
The emphasis of Planetary Atmospheres is on comparative aspects of
planetary atmospheres, generally meaning comparison with the Earth,
including atmospheric composition, thermal structure, cloud
properties, dynamics, weather and climate, and aeronomy. The goal
is to look for common processes at work under different boundary
conditions in order to reach a fundamental understanding of the
physics of atmospheres. As part of a general Physics course, the
material is chosen to emphasise certain aspects that will be of
broad topical interest:
Today we know much about the sky: how stars are born, how they live and die, and how the universe as a whole evolves. We have learned of the existence of another type of matter, indifferent to light and yet decisive for the formation of galaxies, and we have a hint of a dark energy that since the last 4.5 billion years has taken over the control of the cosmos. We postulated and then discovered and even photographed black holes and listened to the faint rustle of the space-time ripple produced when these monsters devour each other. We reached these astonishing results (recognized by a bunch of Nobel Prizes and filling every day the media with wonders for the eyes and the mind) by the marriage of physics and astronomy that unified the Earth with the sky and then by the leap forward of science and technology in the Twentieth Century. This rich heritage has ancient roots. It was built by accumulating discoveries with errors, observations with fantasies, myths, and superstitions with flashes of genius, over a span of millennia, since Homo sapiens, turning his eyes to the immutable and perfect sky, began to ask questions.The book is a narration of the answers to these questions that had evolved over time: a progressive path, inserted in the general history, with some second thoughts and many obstacles. This is a saga of men and machines where greatness sometimes mixes with misery and passion often borders on sacrifice and even martyrdom. Why should we know it? Because our current knowledge is the result of these efforts and of the preconceptions that accompanied them.The challenge has been to present this complex and intricate subject without resorting to any formulas, so that it can be accessible to a wide audience of curious people, including high school and university students and in general all those who normally keep themselves informed of scientific things. A rich bibliography has also been added in the appendix for those wishing to learn more on one or more topics.
Today we know much about the sky: how stars are born, how they live and die, and how the universe as a whole evolves. We have learned of the existence of another type of matter, indifferent to light and yet decisive for the formation of galaxies, and we have a hint of a dark energy that since the last 4.5 billion years has taken over the control of the cosmos. We postulated and then discovered and even photographed black holes and listened to the faint rustle of the space-time ripple produced when these monsters devour each other. We reached these astonishing results (recognized by a bunch of Nobel Prizes and filling every day the media with wonders for the eyes and the mind) by the marriage of physics and astronomy that unified the Earth with the sky and then by the leap forward of science and technology in the Twentieth Century. This rich heritage has ancient roots. It was built by accumulating discoveries with errors, observations with fantasies, myths, and superstitions with flashes of genius, over a span of millennia, since Homo sapiens, turning his eyes to the immutable and perfect sky, began to ask questions.The book is a narration of the answers to these questions that had evolved over time: a progressive path, inserted in the general history, with some second thoughts and many obstacles. This is a saga of men and machines where greatness sometimes mixes with misery and passion often borders on sacrifice and even martyrdom. Why should we know it? Because our current knowledge is the result of these efforts and of the preconceptions that accompanied them.The challenge has been to present this complex and intricate subject without resorting to any formulas, so that it can be accessible to a wide audience of curious people, including high school and university students and in general all those who normally keep themselves informed of scientific things. A rich bibliography has also been added in the appendix for those wishing to learn more on one or more topics.
In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.
The extraordinary life of Bernard Lovell began before the First World War and his story encompasses many of the great events of last hundred years: the Second World War, the invention of radio astronomy, the space race, the Moon landings, the exploration of the Solar System, the Cold War, the Cuban missile crisis and the defence of Britain against nuclear attack. It can now be revealed that he was also a spy. "He ranks as one of the great visionary leaders of science," Martin Rees, the Astronomer Royal, said of him. The great radio telescope which Lovell built became and remains one of the most important scientific instruments in the World. The Jodrell Bank Observatory and the Lovell Telescope have held their place at the frontier of research for fifty five years. This book seeks to explore succinctly and accessibly Lovell's life and achievements in the scientific and political context of the time. His legacy remains great, as can be seen from the extensive media coverage and personal tributes that his death in 2012 attracted all over the world. With the seventieth anniversaries of many wartime events in which he played a crucial role, as well as the recent declassification of information relating to his activities as an agent in the Cold War, this biography is sure to have a broad and timely interest.
This is the ideal resource for beginners and experienced stargazers in the United States and Canada, and has been updated to include new and practical information covering events occurring in North America's night sky throughout 2021. This practical guide is both an easy introduction to astronomy and a useful reference for seasoned stargazers. Now includes a section on comets and a map of the moon. Designed specifically for North America. Written and illustrated by astronomical experts, Storm Dunlop and Wil Tirion, and approved by the astronomers of the Royal Observatory Greenwich. Content includes: * Advice on where to start looking. * Easy-to-use star maps for each month with descriptions of what to see. * Positions of the moon and visible planets. * Details of objects and events in 2021. * Now in three editions: Britain and Ireland; North America; Southern Hemisphere.
The universe is pervaded by particles with extreme energies, millions of times greater than we can produce on Earth. They have been a mystery for over a century. Now, current and future experiments in particle astrophysics are leading us to answers to the most fundamental questions about them. How does nature accelerate the highest energy particles in the universe? Do new interactions between them occur at such extreme energies? Are there unknown aspects of spacetime that can be uncovered by studying these particles?This book brings together three fields within 'extreme astronomy': ultra-high-energy cosmic ray physics, neutrino astronomy, and gamma-ray astronomy, and discusses how each can help answer these questions. Each field is presented with a theoretical introduction that clearly elucidates the key questions scientists face. This is followed by chapters that discuss the current set of experiments - how they work and their discoveries. Finally, new techniques and approaches are discussed to solve the mysteries uncovered by the current experiments.
This book provides a unified treatment of the characteristics of
telescopes of all types, both those whose performance is set by
geometrical aberrations and the effect of the atmosphere, and those
diffraction-limited telescopes designed for observations from above
the atmosphere. The emphasis throughout is on basic principles,
such as Fermat's principle, and their application to optical
systems specifically designed to image distant celestial
sources. * Geometrical aberration theory based on Fermat's
principle
Black holes entered the world of science fiction and films in the 1960s, and their popularity in our culture remains today. The buzz surrounding black holes was and is due, in large part, to their speculative nature. It is still difficult for the general public to determine fact versus fiction as it pertains to this terrifying idea: something big enough to swallow anything and everything in close proximity, with a gravitational force so strong that nothing, including light, can escape. In the fall of 2015, scientists at the Laser Interferometry Gravitational-Wave Observatory (LIGO) detected the first sounds from black holes, brought to earth by the gravitational waves that emitted from the merging of two black holes 1.4 billion light years away in space. This confirmed the existence of gravitational waves, which Albert Einstein predicted in 1916. In the spring of 2017, physicists and astronomers who were working on the Event Horizon Telescope (EHT) project captured the first image of a black hole. This was the supermassive black hole hosted by the galaxy M87 in the constellation Virgo, 53 million light years away, and the image shows the shadow the black hole casts upon the bright light surrounding it. In this book, John Moffat shares the history of black holes and presents the latest research into these mysterious celestial objects, including the astounding results from gravitational wave detection and the shadow of the black hole.
This thesis describes the physics and computational aspects of an end-to-end simulator to predict the performance of a Space-based Far Infrared Interferometer. The present thesis also includes, the science capabilities and instrumental state-of-the art. The latter is the ambitious next step which the Far-Infrared Astrophysical community needs to take to improve in anyway on the results of the most recent and current space telescopes in this wavelength region. This thesis outlines the requirements involved in such a mission and describes the most promising technique to capture most of the astrophysical information by combining spectroscopy to spatial interferometer. The simulation of such a system is extremely complex requiring multiple Fourier transforms each of which is subject to instrument non-idealities and appropriate optimization techniques. As a conclusion, the thesis provides an example of the basic performance achievable with such an instrument when targeting a young star formation region.
This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.
Written by one of the astronomers who 'lived the dream' of working there this book is a restrospectively expanded diary featuring the 'birth and long life' of what was a truely innovative telescope. Based on input received from people involved in its planning, building, operation, and many scientists who observed with it, the author tells this success story of The United Kingdom Infrared Telescope (UKIRT). Conceived in the mid 1970's as a cheap and cheerful light-bucket for the newly emerging field of infrared astronomy it has re-invented itself once a decade to remain at the forefront of infrared astronomy for more than 30 years. Even in 2012 / 2013, when ironically it faced almost certain closure, it remained one of the most scientifically productive telescopes in the world. Everybody, including amateur and professional astronomers, interested in real astronomy projects will enjoy reading that story and meet (again) the persons who lived it.
The Square Kilometre Array (SKA) will provide more than one
order of magnitude improvement in sensitivity compared with any
existing radio telescope over a wavelength range of several hundred
to one, from decametric to microwave wavelengths. It will
revolutionize the study of the most abundant element in the
Universe, hydrogen, from the epoch of reionisation to the
present-day, probing the onset formation period of the very first
stars, will closely scan proto-planets and, through the precision
timing of pulsars, will detect the distortions of space-time due to
gravitational radiation. The SKA is a sensing network spanning 3000
km from its centre and with a collecting area of more than 1 square
kilometre, using technologies of the 21st century. The SKA will
make the study of a wide range of phenomena initially studied at
other wavelengths possible at radio wavelengths, as well as opening
a new discovery window on new phenomena at radio wavelengths.
This book aims at giving the basis of primordial cosmology. The book is self-contained in the sense that all the elements for the derivations of the presented results are given. It can be used as a textbook to study cosmology. It is divided into 3 parts. Part 1 summarizes the fundamentals in theoretical physics needed in cosmology (general relativity, field theory, particle physics). Part 2 describes the standard model of cosmology and includes cosmological solutions of Einstein equations, hot big bang model, cosmological perturbation theory, cosmic microwave background anisotropies, lensing and evidences for dark matter, and inflation. Part 3 describes extensions of this model and opens up to today's research in the field: scalar-tensor theories, supersymetry, the cosmological constant problem and acceleration of the universe, topology of the universe, grand unification and baryogenesis, topological defects and phase transitions, string inspired cosmology including branes and latest developments. The book provides details of all derivations and leads the student up to the level of research articles.
The Workshop "Science with the VLT in the ELT Era" held in Garching from 8th to 12th October 2007 was organised by ESO, with support from its Scienti c and Technical Committee, to provide a forum for the astronomical community to debate the long term future of ESO's Very Large Telescope (VLT) and its interferometric mode (VLTI). In particular it was considered useful for future planning to evaluate how its science use may evolve over the next decade due to competition and/or synergy with new facilities such as ALMA, JWST and, hopefully, at least one next generation 30-40 m extremely large telescope whose acronym appears in the title to symbolise this wider context. These discussions were also held in the fresh light of the Science Vision recently developed within ASTRONET as the rst step towards a 20 year plan for implementing astronomical facilities-the rst such attempt within Europe. Speci c ideas and proposals for new, second generation VLT/I instruments were also solicited following a tradition set by several earlier Workshops held since the start of the VLT development. The programme consisted of invited talks and reviews and contributed talks and posters. Almost all those given are included here although, unfortunately not the several lively but constructive discussion sessions.
The central aim of the "Sunrise "project is to understand the structure and dynamics of the magnetic field in the solar atmosphere. The magnetic field is the source of solar activity, controls the space environment of the Earth and causes the variability of solar irradiance, which may be a significant driver of long-term changes of the terrestrial climate. Interacting with the convective plasma flow, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. These spatial scales cannot be studied systematically from the ground because of image distortions due to atmospheric turbulence. The balloon-borne "Sunrise" telescope has, for the first time, provided measurements of the magnetic structure of the solar atmosphere on its intrinsic spatial and temporal scales. The book gives an overview about the instrumentation and the successful flight in 2009.
This book is a synopsis of modern deep-field astronomy, based on the powerful telescopes and instruments developed in recent years. It is organized along topical themes, such as the extragalactic background radiation at different wavelengths, the evolution of galaxies, the history of star formation, the nature of absorbers, the reionization of the intergalactic medium, the validity of photometric redshifts, gravitational lensing, and clustering of galaxies. Stellar and substellar objects were not neglected, however, and one session was devoted to nearby bodies such as trans-Neptunian solar system objects, brown dwarfs, and stars with special characteristics.
Astrometry from space was performed for the first time and with great success by the ESA Hipparcos satellite (1989-93). This mission was designed as an as trometry mission, but the use of a photon counting detector made it possible to produce very important photometric results: the most accurate astronomical pho tometry ever by the main Hipparcos mission in a very broad band of 120000 stars, and the two-colour Tycho-2 photometry of 2.5 million stars. The cornerstone ESA mission GAIA was approved in October 2000 for launch not later than 2012. This mission will use CCDs in time-delayed integration mode instead of the photo-cathode detectors used in Hipparcos. Due to the higher quantum efficiency of the CCDs, simultaneous integration of many stars, and larger tele scope apertures GAIA will utilize the star light a million times more efficiently than Hipparcos, resulting in astrometry and multi-colour photometry for one billion stars. GAIA photometry is crucial for the scientific utilization of the astrometric results, and the photometric data have a high scientific content in themselves."
Jesuits established a large number of astronomical, geophysical and
meteorological observatories during the 17th and 18th centuries and
again during the 19th and 20th centuries throughout the world. The
history of these observatories has never been published in a
complete form. Many early European astronomical observatories were
established in Jesuit colleges.
Dear Friends, It seems like it was only yesterday that we drove the last of you to the airport. The memories and the spirit of the Scientific Detectors for Astronomy Workshop (SDW2002) remain fresh and strong. For us, this was a very special event, a great gathering of what may be one of the friendliest and most cooperative technical communities on our little planet. We have tried to capture the spirit of the Workshop in these Proceedings and we hope you are able to relive your week in Hawaii. For those readers who did not attend, we invite you into this community. As you probably noticed, there is a new name on the cover: Jenna Beletic was the ace up our sleeve for these Proceedings. As a summer intern at Keck, she took up the task of organizing, proofreading, editing and formatting the papers. She also made the graphics (her artistic talents shine on pages xxxiii and xxxv), contacted authors and prepared the mountain of paperwork which goes with producing a book. Jenna's enthusiasm at learning, her passion for the job and creativity (e. g. find 100 ways to get Paola and Jim to do their jobs) have been a motivating addition to our team of "old workshop foxes..".... and a source for a good deal of paternal pride. We are honoured to have her as a fellow editor.
Many satellites have recently been launched or are in preparation, which operate in the microwave to IR ranges, the main objective being to observe the earth's atmosphere or interstellar clouds. Analysis of the data they supply requires extensive laboratory work because we still only have sufficiently accurate data (line positions, intensities, and profiles) for only a few species. Furthermore, the observer community is making increasing calls for laboratory data, as new development open up new observational possibilities (such as submillimeter observation). Research on these subjects involves many different areas of specialisation in fields of research that generate a wealth of data. In Spectroscopy from Space the people responsible for field observations explain which results they are expecting from their measurements and how laboratory people can help them to analyse their satellite data. Laboratory spectroscopists explain why what they can do now, and what kinds of experiment and theoretical development that might undertake to meet the needs of the remote sensing community. The problems of distributing reliable laboratory data in a timely way are also addressed.
This book presents lecture materials from the Third LOFAR Data School, transformed into a coherent and complete reference book describing the LOFAR design, along with descriptions of primary science cases, data processing techniques, and recipes for data handling. Together with hands-on exercises the chapters, based on the lecture notes, teach fundamentals and practical knowledge. LOFAR is a new and innovative radio telescope operating at low radio frequencies (10-250 MHz) and is the first of a new generation of radio interferometers that are leading the way to the ambitious Square Kilometre Array (SKA) to be built in the next decade. This unique reference guide serves as a primary information source for research groups around the world that seek to make the most of LOFAR data, as well as those who will push these topics forward to the next level with the design, construction, and realization of the SKA. This book will also be useful as supplementary reading material for any astrophysics overview or astrophysical techniques course, particularly those geared towards radio astronomy (and radio astronomy techniques).
A masterly survey of the last 13 years of Very Long Baseline Interferometry, reviewed in light of the most advanced astronomical observations. Topics covered include: Nonthermal emission from extragalactic radio sources; Principles of synchrotron emission in relation to astrophysics; Theory of relativistic jets; Young, powerful radio sources and their evolution; Scintillation in extragalactic radio sources; Radio and optical interferometry; Radio polarimetry; Unified schemes; Deep fields; Tropospheric and ionospheric phase calibration; Supernovae; VLBI for geodesy and geodynamics.
The book is an introduction to practical astrometry, dealing with the determination of positions, motions, distances and dimensions of celestial bodies ranging from quasars to artificial satellites. The main part is devoted to the description of instruments and observing techniques, and also includes the basic properties of optical instruments and a detailed description of the atmospheric effects on observations. A brief summary of the main phenomena in positional astronomy and of data treatment is given. Although classical astrometric methods are described, emphasis is put on new, more precise techniques such as CCD, optical and radio interferometry, space astrometry, etc. For this 2nd edition, the release of the Hipparcos and Tycho catalogs, the rise in CCD astrometry and the adoption of a new celestial reference frame by the IAU led to a significant modification of the text. And, especially, the outlook for astrometry has been completely rewritten.
Adaptive optics allows the theoretical limit of angular resolution to be achieved from a large telescope, despite the presence of turbulence. Thus an eight meter class telescope, such as one of the four in the Very Large Telescope operated by ESO in Chile, will in future be routinely capable of an angular resolution of almost 0.01 arcsec, compared tot he present resolution of about 0.5 arcsec for conventional imaging in good condition. All the world's major telescopes either have adaptive optics or are in the process of building AO systems. It turns out that a reasonable fraction of the sky can be observed using adaptive optics, with moderately good imaging quality, provided imaging in done in the near IR. To move out of the near IR, with its relatively poor angular resolution, astronomers need a laser guide star. There is a layer of Na atoms at approximately 90 km altitude that can be excited by a laser to produce such a source, or Rayleigh scattering can be employed lower in the atmosphere. But the production and use of laser guide stars is not trivial, and the key issues determining their successful implementation are discussed here, including the physics of the Na atom, the cone effect, tilt determination, sky coverage, and numerous potential astronomical applications. |
You may like...
I Love Jesus, But I Want To Die - Moving…
Sarah J Robinson
Paperback
|