![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Observatories, equipment & methods
Large area sky surveys are now a reality in the radio, IR, optical and X-ray passbands. In the next few years, new surveys using optical, UV and IR mosaic cameras with high throughput digital detectors will expand the dynamic range and accuracy of photometry and astrometry of objects over a significant fraction of the entire sky. Parallel X-ray and radio surveys over the same areas will produce astronomical image and spectroscopic databases of unprecedented size and quality. The combined data sets will provide significant new constraints on star formation, stellar dynamics, Galactic structure, the evolution of galaxies and large scale structure, as well as new opportunities to identify rare objects in the solar system and the Galaxy. Large area surveys have formidable data acquisition, processing, archiving, and data distribution demands and this meeting provided a forum for sharing experiences amongst workers specializing in different wavebands as well as discussing how multiband observations can reveal fundamental relationships in our understanding of the Universe.
The founding of the Dudley Observatory at Albany, N.Y., in 1852 was a milestone in humanity's age-old quest to understand the heavens. As the best equipped astronomical observatory in the U.S. led by the first American to hold a Ph.D. in astronomy, Benjamin Apthorp Gould Jr., the observatory helped pioneer world-class astronomy in America. It also proclaimed Albany's status as a major national center of culture, knowledge and affluence. This book explores the story of the Dudley Observatory as a 150 year long episode in civic astronomy. The story ranges from a bitter civic controversy to a venture into space, from the banks of the Hudson River to the highlands of Argentina. It is a unique glimpse at a path not taken, a way of doing science once promising, now vanished. As discoveries by the Dudley Observatory's astronomers, especially its second director Lewis Boss, made significant contributions to the modern vision of our Milky Way galaxy as a rotating spiral of more than a million stars, the advance of astronomy left that little observatory behind.
'This is an interesting and bittersweet biography. Elizabeth Alexander was a capable and energetic scientist, but circumstances meant that she was never able to settle down and develop her scientific career. The three years she spent in charge of the Operational Research Section of the Radar Development Laboratory in New Zealand was the only time that Elizabeth held a position of responsibility, and is a clear indication that, had she lived 50 years later, she would have been an effective science leader ... The book outlines the career of a remarkable scientist, and is a significant contribution to the history of several different areas of science. 'Scoop Review of BooksMany women scientists, particularly those who did crucial work in two world wars, have disappeared from history. Until they are written back in, the history of science will continue to remain unbalanced. This book tells the story of Elizabeth Alexander, a pioneering scientist who changed thinking in geology and radio astronomy during WWII and its aftermath.Building on an unpublished diary, recently declassified government records and archive material adding considerably to knowledge about radar developments in the Pacific in WWII, this book also contextualises Elizabeth's academic life in Singapore before the war, and the country's educational and physical reconstruction after it as it moved towards independence.This unique story is a must-read for readers interested in scientific, social and military history during the WWII, historians of geology, radar, as well as scientific biographies.Related Link(s)
A reprint edition of a 1966 biography of foremost astronomer George Ellery Hale, who laid much of the foundation of modern astrophysics and observational cosmology. He's best known for the planning and building of the 200-inch Hale Telescope of the Palomar Mountain Observatory. This book features a new introduction by Allan Sandage and an index not included in the original work. Since the history of astrophysics is mostly undocumented, this work provides a rare look at Hale's scientific achievements: his invention of the spectroheliograph, his discovery of the magnetic nature of sunspots, and his legendary leadership in founding the Yerkes, Mount Wilson, and Palomar Mountain Observatories.
This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.
Remembrance of Things Past It scarcely seems credible that it was almost exactly thirty years ago that I ?rst met Duccio Macchetto at the ?rst meeting of the newly formed Science Working Group of what was then called the Space Telescope project. We were there in slightly d- ferent roles, Duccio as the project scientist for the Faint Object Camera and I as an interdisciplinary scientist. Henk van de Hulst was also there as the of?cial rep- sentative of ESO. The approval of the project was the end result of a great deal of lobbying and politicking both in the USA and Europe, the European contribution proving essential to the approval process in the USA. Those interested in the nit- gritty of the process should read Robert Smith's outstanding history of the Hubble Space Telescope. We should have realized early on that we were in for a rough time. At that ?rst meeting of the Science Working Group I remember vividly NASA Headquarters telling us that the Space Telescope was a success-oriented programme that would cost M$ 680. Well, we could live with the cost-tag, but we should have had concerns about the expression "success-oriented." This meant that everything should turn out exactly as planned, the project would be carried out within the projected time-scale and budget and the telescope would be launched in 1983. Well, the rest is history. We learned a lot of useful jargon along the way.
The discovery of a gradual acceleration in the moon's mean motion by Edmond Halley in the last decade of the seventeenth century led to a revival of interest in reports of astronomical observations from antiquity. These observations provided the only means to study the moon's 'secular acceleration', as this newly-discovered acceleration became known. This book contains the first detailed study of the use of ancient and medieval astronomical observations in order to investigate the moon's secular acceleration from its discovery by Halley to the establishment of the magnitude of the acceleration by Richard Dunthorne, Tobias Mayer and Jerome Lalande in the 1740s and 1750s. Making extensive use of previously unstudied manuscripts, this work shows how different astronomers used the same small body of preserved ancient observations in different ways in their work on the secular acceleration. In addition, this work looks at the wider context of the study of the moon's secular acceleration, including its use in debates of biblical chronology, whether the heavens were made up of aether, and the use of astronomy in determining geographical longitude. It also discusses wider issues of the perceptions and knowledge of ancient and medieval astronomy in the early-modern period. This book will be of interest to historians of astronomy, astronomers and historians of the ancient world."
Distant galaxies encapsulate the various stages of galaxy evolution and formation from over 95% of the development of the universe. As early as twenty-five years ago, little was known about them, however since the first systematic survey was completed in the 1990s, increasing amounts of resources have been devoted to their discovery and research. This book summarises for the first time the numerous techniques used for observing, analysing, and understanding the evolution and formation of these distant galaxies.In this rapidly expanding research field, this text is an every-day companion handbook for graduate students and active researchers. It provides guidelines in sample selection, imaging, integrated spectroscopy and 3D spectroscopy, which help to avoid the numerous pitfalls of observational and analysis techniques in use in extragalactic astronomy. It also paves the way for establishing relations between fundamental properties of distant galaxies. At each step, the reader is assisted with numerous practical examples and ready-to-use methodology to help understand and analyse research.Francois Hammer worked initially in general relativity and made the first modelling of gravitational lenses prior to their spectroscopic confirmation. Following this, he became co-leader of the first complete survey of distant galaxies, the Canada-France-Redshift Survey. This led to the discovery of the strong decrease of the cosmic star formation density measured from UV light as z=1, which, alongside Hector Flores, they confirmed as bolometric and dust independent. With Mathieu Puech, they then pioneered the 3D spectroscopy of distant galaxies, leading to a major increase of understanding of the dynamic state of distant galaxies evidenced by the scatter of the Tully-Fisher relation. This led them to propose, with the addition to the team of Myriam Rodrigues, that galactic disks may survive or be rebuilt in gas-rich mergers, a scenario that is consistent with contemporary cosmological simulations. Besides extensive observational experience, the authors have led, or are leading, several instruments implemented or to be implemented at the largest telescopes, including VLT/Giraffe, VLT/X-shooter, VLT/MOONS and E-ELT/MOSAIC. They have also developed several observational techniques in adaptive optics, and in sky subtraction for integral field units and fibre instruments.
Distant galaxies encapsulate the various stages of galaxy evolution and formation from over 95% of the development of the universe. As early as twenty-five years ago, little was known about them, however since the first systematic survey was completed in the 1990s, increasing amounts of resources have been devoted to their discovery and research. This book summarises for the first time the numerous techniques used for observing, analysing, and understanding the evolution and formation of these distant galaxies.In this rapidly expanding research field, this text is an every-day companion handbook for graduate students and active researchers. It provides guidelines in sample selection, imaging, integrated spectroscopy and 3D spectroscopy, which help to avoid the numerous pitfalls of observational and analysis techniques in use in extragalactic astronomy. It also paves the way for establishing relations between fundamental properties of distant galaxies. At each step, the reader is assisted with numerous practical examples and ready-to-use methodology to help understand and analyse research.Francois Hammer worked initially in general relativity and made the first modelling of gravitational lenses prior to their spectroscopic confirmation. Following this, he became co-leader of the first complete survey of distant galaxies, the Canada-France-Redshift Survey. This led to the discovery of the strong decrease of the cosmic star formation density measured from UV light as z=1, which, alongside Hector Flores, they confirmed as bolometric and dust independent. With Mathieu Puech, they then pioneered the 3D spectroscopy of distant galaxies, leading to a major increase of understanding of the dynamic state of distant galaxies evidenced by the scatter of the Tully-Fisher relation. This led them to propose, with the addition to the team of Myriam Rodrigues, that galactic disks may survive or be rebuilt in gas-rich mergers, a scenario that is consistent with contemporary cosmological simulations. Besides extensive observational experience, the authors have led, or are leading, several instruments implemented or to be implemented at the largest telescopes, including VLT/Giraffe, VLT/X-shooter, VLT/MOONS and E-ELT/MOSAIC. They have also developed several observational techniques in adaptive optics, and in sky subtraction for integral field units and fibre instruments.
This 1990 book is the official history of the Anglo-Australian Telescope which started to be built at Coonabarabran in New South Wales in 1968 and came into operation in 1974. The telescope is part of the Anglo-Australian Observatory which provides facilities for research in optical astronomy for scientists from Britain and Australia. The authors of this book were all involved in different capacities throughout the development of the telescope. As such it gives a detailed and personal record of the scientific, administrative and political developments from the moment negotiations began to the present day. The AAT has been, and continues to be, an outstanding success and can lay claim to being the best instrumented telescope in the world, with a very wide capability and high sensitivity. This is a unique and important book.
What can emission lines tell us about an astrophysical object? A workshop at the Space Telescope Science Institute was dedicated to address just this question - for a host of objects (including planetary nebulae and active galactic nuclei) across a broad range of wavelengths (from the infrared through to gamma-rays). Thirteen review articles from internationally renowned experts are presented in this volume. They provide an edited and coherent overview of the latest technical data, techniques in and applications of the study of emission lines from a variety of objects. Chapters include the theory of radiative transfer, photoionising shocks, and emission lines from stellar winds, as well as useful summaries of abundance determinations, atomic data, and diagnostics for IR, UV, gamma-ray and molecular lines. Together these review articles provide an overview of the analysis of emission lines. They summarise current knowledge, highlight outstanding problems and provide focus for fruitful future research. In this way they provide an excellent introduction for graduate students and reference for professionals.
This book is the product of five and a half years of research dedicated to the und- standing of radar interferometry, a relatively new space-geodetic technique for m- suring the earth's topography and its deformation. The main reason for undertaking this work, early 1995, was the fact that this technique proved to be extremely useful for wide-scale, fine-resolution deformation measurements. Especially the interf- ometric products from the ERS-1 satellite provided beautiful first results-several interferometric images appeared as highlights on the cover of journals such as Nature and Science. Accuracies of a few millimeters in the radar line of sight were claimed in semi-continuous image data acquired globally, irrespective of cloud cover or solar illumination. Unfortunately, because of the relative lack of supportive observations at these resolutions and accuracies, validation of the precision and reliability of the results remained an issue of concern. From a geodetic point of view, several survey techniques are commonly available to measure a specific geophysical phenomenon. To make an optimal choice between these techniques it is important to have a uniform and quantitative approach for describing the errors and how these errors propagate to the estimated parameters. In this context, the research described in this book was initiated. It describes issues involved with different types of errors, induced by the sensor, the data processing, satellite positioning accuracy, atmospheric propagation, and scattering character- tics. Nevertheless, as the first item in the subtitle "Data Interpretation and Error Analysis" suggests, data interpretation is not always straightforward.
The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. Among recent advances one has to indicate, for instance, first results obtained from space and LHC experiments and progress done in preparation of the latter experiments upgrades, including plans for the LHC machine upgrade. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, medical applications have a particular importance due to health and social benefits they bring to the public.
This fascinating portrait of an amateur astronomy movement tells the story of how Charles Olivier recruited a hard-working cadre of citizen scientists to rehabilitate the study of meteors. By 1936, Olivier and members of his American Meteor Society had succeeded in disproving an erroneous idea about meteor showers. Using careful observations, they restored the public's trust in predictions about periodic showers and renewed respect for meteor astronomy among professional astronomers in the United States. Charles Olivier and his society of observers who were passionate about watching for meteors in the night sky left a major impact on the field. In addition to describing Olivier's career and describing his struggles with competitive colleagues in a hostile scientific climate, the author provides biographies of some of the scores of women and men of all ages who aided Olivier in making shower observations, from the Leonids and Perseids and others. Half of these amateur volunteers were from 13 to 25 years of age. Their work allowed Olivier and the AMS to contradict the fallacious belief in stationary and long-enduring meteor showers, bringing the theory of their origin into alignment with celestial mechanics. Thanks to Olivier and his collaborators, the study of meteors took a great leap forward in the twentieth century to earn a place as a worthy topic of study among professional astronomers.
New Edition: Astronomical Spectroscopy (3rd Edition)Nearly all information about the Universe comes from the study of light as it reaches us. However, understanding the information contained in this light requires both telescopes capable of resolving it into its component colours and a detailed knowledge of the quantum mechanical behaviour of atoms and molecules. This book, which is based on a third-year undergraduate course taught by the author at University College London, presents the basic atomic and molecular physics necessary to understand and interpret astronomical spectra. It explains how and what kind of information can be extracted from these spectra. Contemporary astronomical spectra are used extensively to study the underlying atomic physics and illustrate the results.
New Edition: Astronomical Spectroscopy (3rd Edition)Nearly all information about the Universe comes from the study of light as it reaches us. However, understanding the information contained in this light requires both telescopes capable of resolving it into its component colours and a detailed knowledge of the quantum mechanical behaviour of atoms and molecules. This book, which is based on a third-year undergraduate course taught by the author at University College London, presents the basic atomic and molecular physics necessary to understand and interpret astronomical spectra. It explains how and what kind of information can be extracted from these spectra. Contemporary astronomical spectra are used extensively to study the underlying atomic physics and illustrate the results.
This book collects most of the talks and poster presentations presented at the 'Optical Turbulence - Astronomy meets Meteorology' international conference held on 15-18 September, 2008 at Nymphes Bay, Alghero, Sardinia, Italy. The meeting aimed to deal with one of the major causes of wavefront perturbations limiting the astronomical high-angular-resolution observations from the ground. The uniqueness of this meeting has been the effort to attack this topic in a synergic and multidisciplinary approach promoting constructive discussions between the actors of this science - the astronomers, meteorologists, physicists of the atmosphere and the experts in adaptive optics and interferometry techniques whose main goal is to correct, in real-time, the wavefront perturbations induced by atmospheric turbulence to restore at the telescope foci the best available image quality.
British University Observatories fills a gap in the historiography of British astronomy by offering the histories of observatories identified as a group by their shared characteristics. The first full histories of the Oxford and Cambridge observatories are here central to an explanatory history of each of the six that undertook research before World War II - Oxford, Dunsink, Cambridge, Durham, Glasgow and London. Each struggled to evolve in the middle ground between the royal observatories and those of the 'Grand Amateurs' in the nineteenth century. Fundamental issues are how and why astronomy came into the universities, how research was reconciled with teaching, lack of endowment, and response to the challenge of astrophysics. One organizing theme is the central importance of the individual professor-directors in determining the fortunes of these observatories, the community of assistants, and their role in institutional politics sometimes of the murkiest kind, patronage networks and discipline shaping coteries. The use of many primary sources illustrates personal motivations and experience. This book will intrigue anyone interested in the history of astronomy, of telescopes, of scientific institutions, and of the history of universities. The history of each individual observatory can easily be followed from foundation to 1939, or compared to experience elsewhere across the period. Astronomy is competitive and international, and the British experience is contextualised by comparison for the first time to those in Germany, France, Italy and the USA.
Simultaneously storing both spectral and spatial information, 3D spectroscopy offers a new way to tackle astrophysical problems, and opens up new lines of research. Since its inception in the eighties and early nineties, research in this field has grown enormously. Large telescopes all around the world are now equipped with integral field units, and two instruments of the future James Webb Space Telescope will have integral field spectroscopic capabilities. Nowadays, more effort is dedicated to refining techniques for reducing, analyzing and interpreting the data obtained with 3D spectrographs. Containing lectures from the seventeenth Winter School of the Canary Islands Astrophysics Institute, this book explores new 3D spectroscopy techniques and data. A broad and balanced presentation of research in this field, it introduces astronomers to a new generation of instruments, widening the appeal of integral field spectroscopy and helping it become a powerful tool in tackling astrophysical problems.
An in-depth guide for aspiring astronomers and Moon observers from the Royal Observatory Greenwich. Includes detailed Moon maps and covers the history of lunar observation and exploration, the properties of the Moon, its origin and orbit. This is the ideal book for Moon observers covering essential equipment, and the key events to look out for. Detailed advice is given on how to choose a telescope and how to capture the Moon in sketches. Discover all you need to know about eclipses, blue moons, supermoons, conjunctions and occultations. A comprehensive section covers astrophotography using lenses, telescopes, Smartphones, including video and how to process your images. Comes with a photographic atlas of lunar features with plates and annotated maps. A glossary of key terms, index of lunar features and software references are also provided.
Though contemporary sailors generally use electronic systems to orient themselves, the sextant is far from redundant. This purest of all nautical instruments, which allows seafarers to accurately determine their global position alone and without the aid of modern technology, is still required equipment on all commercial trading vessels; should electronic systems fail, a sextant can make the difference between disaster and survival. In this invaluable tutorial for beginning navigators, Pike clearly and efficiently explains the use and care of the sextant.
Interpreting Astronomical Spectra D. Emerson Institute for Astronomy, Department of Physics and Astronomy, The University of Edingurgh "Interpreting Astronomical Spectra" describes how physical conditions such as temperature, density and composition can be obtained from the spectra of a broad range of astronomical environments ranging from the cold interstellar medium to very hot coronal gas and from stellar atmospheres to quasars. In this book the author has succeeded in providing a coherent and integrated approach to the interpretation of astronomical spectroscopy, placing the emphasis on the physical understanding of spectrum formation rather than on instrumental considerations. MKS units and consistent symbols are employed throughout so that the fundamental ideas common to diverse environments are made clear and the importance of different temperature ranges and densities can be seen. Aimed at senior undergraduates and graduates studying physics, astronomy and astrophysics, this book will also appeal to the professional astronomer.
Very Short Introductions: Brilliant, Sharp, Inspiring Almost everything we know about the Universe has come from studying the messages carried by light from outer space. Until only a handful of decades ago, this meant observing optical photons in the narrow visible region of the electromagnetic spectrum. However, recent technological developments have now enabled us to extend this range and explore the Universe at radio, infrared, ultraviolet, X-ray, and gamma-ray wavelengths. The observations reveal a plethora of exotic phenomena such as young galaxies at the edge of the visible Universe, quasars, pulsars, colliding galaxies, and exploding stars, often at great distances. We have discovered that the Universe is expanding and that the expansion itself is accelerating. Closer to our home planet, we track killer asteroids and comets. Working closely together, observational astronomy and astrophysics have shown us how stars produce their energy, where the chemical elements come from, how black holes form, and how the giant supermassive black holes lurking in the hearts of galaxies spew immensely powerful jets of particles and energy thousands of light years out into space. And we now have new ways beyond light to probe the mysteries of the Universe. This Very Short Introduction describes how neutrinos and gravitational waves are revolutionizing our knowledge. How do we know all this? Advances in telescope technologies offer a partial explanation, but technology alone is not enough. Unlocking the secrets of the Universe also involves the critical application of the laws of physics to the observations. Cottrell describes how we are turning observations into knowledge and how theory, in turn, is inspiring new observations. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
A new source of funding for astronomy stemmed from the creation of the National Science Foundation (NSF) in 1950. Astronomers were quick to take advantage of the opportunities this provided to found new observatories. In this 1997 book, the science and politics of the establishment, funding, construction and operation of the Kitt Peak National Observatory (KPNO) and the Cerro Tololo Inter-American Observatory (CTIO) by the Association of Universities for Research in Astronomy (AURA) are seen from the unique perspective of Frank K. Edmondson, a former member of the AURA board of directors. AURA was asked to manage the Sacramento Peak Observatory (SPO) in 1976, and in 1983 the National Solar Observatory (NSO) was formed by merging the SPO and the KPNO solar programs. In 1981 NASA chose AURA to establish and operate the Space Telescope Science Institute (STScI). This is a personal account of a period of major innovation in American optical astronomy. |
![]() ![]() You may like...
Northern Lights - The Definitive Guide…
Tom Kerss, Royal Observatory Greenwich, …
Paperback
Enchantment Of Urania, The: 25 Centuries…
Massimo Capaccioli
Hardcover
R3,939
Discovery Miles 39 390
Analyzing the Physics of Radio…
Kim Ho Yeap, Kazuhiro Hirasawa
Hardcover
R6,847
Discovery Miles 68 470
Enchantment Of Urania, The: 25 Centuries…
Massimo Capaccioli
Paperback
R1,669
Discovery Miles 16 690
Large Area Networked Detectors For…
Gus Sinnis, Pierre Sokolsky
Hardcover
R3,135
Discovery Miles 31 350
Dynamics and Astrometry of Natural and…
I.M. Wytrzyszczak, J.H. Lieske, …
Hardcover
R6,071
Discovery Miles 60 710
Space Has No Frontier - The Terrestrial…
John Bromely-Davenport
Hardcover
![]() R616 Discovery Miles 6 160
|