![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Petrology
This concise, clear and handy-sized volume, aimed at the undergraduate level, provides an introduction to the observation, description and identifi cation in thin section, using the polarizing microscope, of samples of the commonlyoccurring rocks and minerals. Illustrated with a wealth of full colour thin section photomicrographs, and with the original images enhanced by new examples and a revised text, the book explains how to observe mineral and rock samples under the microscope. The book highlights the important diagnostic features of minerals and deals with all rock types - igneous, sedimentary and metamorphic - each with equal emphasis and authority, giving students the knowledge and confi dence to begin to identify specimens for themselves. While intended for students in geology, geography, civil engineering and materials science, the book stands on its own as a beautiful collection of photomicrographs and a permanent source of reference and fascination for all those interested in the nature and science of the world of rocks and minerals.
Oceanic basalts are the most abundant rock type found at the earth's surface, and as such they have been the subject of considerable research, particularly since the concept of sea-floor spreading became widely accepted. This book provides a review of these rocks, first dicussing how we sample the ocean floor and what we know about the structure of the oceanic crust, followed by an overview of the various regional settings (Pacific crust, Atlantic crust, marginal basins, seamounts and islands) and finally examines the main processes (and their interactions) which prevail during the generation and emplacement of oceanic basalt magmas. This is a volume for geologists, geochemists and geophysicists and a source of reference for advanced undergraduate students and postgraduates in these disciplines.
The interpretation of geophysical data in exploration geophysics, well logging, engineering, mining and environmental geophysics requires knowledge of the physical properties of rocks and their correlations. Physical properties are a "key" for combined interpretation techniques. The study of rock physics provides an interdisciplinary treatment of physical properties, whether related to geophysical, geotechnical, hydrological or geological methodology. Physical Properties of Rocks, 2nd Edition, describes the physical fundamentals of rock properties, based on typical experimental results and relevant theories and models. It provides readers with all relevant rock properties and their interrelationships in one concise volume. Furthermore, it guides the reader through experimental and theoretical knowledge in order to handle models and theories in practice. Throughout the book the author focuses on the problems of applied geophysics with respect to exploration and the expanding field of applications in engineering and mining geophysics, geotechnics, hydrology and environmental problems, and the properties under the conditions of the upper Earth crust.
Geochemical reaction modeling plays an increasingly vital role in several areas of geoscience ranging from groundwater and surface water hydrology to environmental preservation and remediation to economic and petroleum geology. This book provides an up-to-date overview and a large number of fully worked examples of the use of numerical methods to model reaction processes in the Earth's crust and on its surface. Special attention is given to integrating surface complexation, kinetic rate laws, and isotope fractionation into quantitative process models. Earth science professionals and students in a variety of specialties will benefit from the wealth of information and practical advice this book has to offer.
Tuzo is the never-before-told story of one of Canada's most influential scientists and the discovery of plate tectonics, a pivotal development that forever altered how we think of our planet. In 1961, a Canadian geologist named John "Jock" Tuzo Wilson (1908-1993) jettisoned decades of strongly held opposition to theories of moving continents and embraced the idea that they drift across the surface of the Earth. Tuzo tells the fascinating life story of Tuzo Wilson, from his early forays as a teenaged geological assistant working on the remote Canadian Shield in the 1920s to his experiences as a civilian-soldier in the Second World War to his ultimate role as the venerated father of plate tectonics. Illuminating how science is done, this book blends Tuzo's life story with the development of the theory of plate tectonics, showing along the way how scientific theories are debated, rejected, and accepted. Gorgeously illustrated, Tuzo will appeal to anyone interested in the natural world around them.
* An accessible resource, covering the fundamentals of carbonate
reservoir engineering
These proceedings contain the scientific contributions presented at the 2nd Asian Rock Mechanics Symposium (ISRM 2001 - 2nd ARMS). The theme of the symposium was "Frontiers of Rock Mechanics and Sustainable Development in the 21st Century."
This volume is an excellently written and beautifully illustrated textbook compiled by a multidisciplinary group of experts examining the production, transport and deposition of volcaniclasts (tephra and epiclasts) as well as their economic geology.
Modeling of Magmatic and Allied Processes presents methods and models for the quantification of geological processes. Conceptual models for magmatic differentiation involving crystallization and mixing are presented and applied to field and textural data. Model equations for the degree of partial melting in presence perturbations of lithospheric geotherms and partitioning of trace/radioactive elements in the matrix and melts, and the formation of continents with melt additions are described. Diverse magmatic products are shown to result from differentiation processes rather than magmatic source heterogeneities. The degree of partial melting depends on mantle temperatures, for which parameterized thermal convection models are reviewed. Perturbations in geotherms caused by mantle heat flow, CO2 flux from great depths and tectonic thrusting are analyzed. The petrogenetic significance of accessory minerals of felsic magma evolution is assessed with the help of examples from Carpathian granitoids. Methods for simulating the 3-D Concentration and Distribution Models (DC-DMs) and fractal dimension of evolving magma systems are described with examples. The use of conventional scanning electron microscopy methods and electron microprobe to characterize and infer magmatic processes is explained, and the background and economic potential of hydrothermal systems are examined. The nature of oxidizing felsic magmas along with their potential for copper mineralization is discussed. In closing, the handling, calculation and plotting of geochemical data for igneous rock suites using the R-language-based software Geochemical Data Toolkit (GCDkit) along with plug-in modules for the forward and reverse mass-balance calculation of fractional crystallization are demonstrated.
Utilizing SEM, TEM and cathodoluminescence images to illustrate the role of such techniques for interpreting metamorphic rocks, this text aims to help undergraduate students in geology to recognize and interpret metamorphic textures and microstructures in thin-section. For lecturers and postgraduates in geology and petrology, the book provides reference for the interpretation of metamorphic rocks, with an extensive list of references relevant to each chapter, and a comprehensive glossary of terms.
These three works cover the entire field of formation evaluation,
from basic concepts and theories, through standard methods used by
the petroleum industry, on to new and exciting applications in
environmental science and engineering, hydrogeology, and other
fields. Designed to be used individually or as a set, these volumes
represent the first comprehensive assessment of all exploration
methodologies. No other books offer the breadth of information and
range of applications available in this set.
This volume, based on Symposium on Igneous Petrology held during the 30th International Geological Congress, focuses on intraplate magmatism and diversity and complexity of mechanisms of magma formation.
This volume contains papers presented at the 30th International Geological Congress on coal. It includes information on the applications of high-resolution sequence stratigraphy to paralicand terrestrial coal-bearing strata and petrology and depositional environment of Early Jurassic coal.
Because water is one of the most important life-supporting media on the planet, the quality of aquatic ecosystems is of great interest to the entire world population. One of the factors that greatly affects water quality is the condition of the underlying sediment layer. The Manual of Physico-Chemical Analysis of Aquatic Sediments addresses the best methods for quantitative determination of chemical forms of different elements and compounds, bioassessment techniques, and determination of physical properties of sediments. Essential information for surveying, research, and monitoring of sediment contamination is covered. This manual will aid sediment biologists, geochemists, limnologists, regulatory program managers, environmental chemists and toxicologists and environmental consultants in preparing plans for proper remedial action.
The variety of volcanic activity in the Solar System is widely recognised, yet the majestic sequences of magmatic processes that operate within an active planet are much less well known. Providing an exposition of igneous rocks, magmas and volcanic erupsions, this book brings together magnetic and volcanic data from different tectonic settings, and planets, with explanations of how they fit together. It systematically examines composition, origin and evolution of common igneous rocks, yet also examines a variety of rare magnetic rocks that play a crucial role in the global magma/igneous rock system.
There has been a great advance in the understanding of processes of meta morphism and of metamorphic rocks since the last edition of this book appeared. Methods for determining temperatures and pressures have become almost routine, and there is a wide appreciation that there is not a single temperature and pressure of metamorphism, but that rocks may preserve, in their minerals, chemistry and textures, traces of their history of burial, heating, deformation and permeation by fluids. However, this excit ing new knowledge is still often difficult for non-specialists to understand, and this book, like the first edition, aims at enlightenment. I have concen trated on the interpretation of the plate tectonic settings of metamorphism, rather than following a geochemical approach. Although there is an impress ive degree of agreement between the two, I believe that attempting to discover the tectonic conditions accompanying rock recrystallization will more readily arouse the interest of the beginner. I have used a series of case histories, as in the first edition, drawing on my own direct experience as far as possible. This m"
The papers compiled in this book cover almost all aspects of in-situ characterization ranging from rock mass classification measurement of in-situ stresses, strength and deformation characteristics to field instrumentation and back analysis of observations made.
1. Kimberlites and Orangeites.- 1.1. Etymology of Group I and II Kimberlites.- 1.2. Definitions of Cryptogenic and Primary Phases.- 1.3. The Hybrid Nature of Kimberlites and Orangeites.- 1.4. Philosophy and Principles of Classification.- 1.4.1. Modal versus Genetic Classifications.- 1.4.2. Petrological Clans.- 1.4.3. The Lamprophyre Clan.- 1.4.4. Mineralogical-Genetic Nomenclature within Petrological Clans.- 1.5. Mineralogical Comparisons between Kimberlites and Orangeites.- 1.6. Definitions of Orangeites and Kimberlites.- 1.6.1. Orangeites.- 1.6.2. Kimberlites.- 1.7. Age and Distribution of Orangeites.- 1.8. Occurrences of Orangeites.- 1.8.1. Finsch.- 1.8.2. Barkly West Region.- 1.8.2.1. Bellsbank.- 1.8.2.2. Sover.- 1.8.2.3. Newlands.- 1.8.2.4. Pniel.- 1.8.3. Boshof District.- 1.8.3.1. Roberts Victor.- 1.8.3.2. New Elands.- 1.8.4. Winburg District.- 1.8.5. Kroonstad District.- 1.8.6. Swartruggens District.- 1.8.7. Dokolwayo.- 1.8.8. Prieska District.- 1.8.9. Summary.- 1.9. Textural-Genetic Classifications of Petrological Clans....- 1.9.1. Kimberlites.- 1.9.1.1. Crater Facies.- 1.9.1.2. Diatreme Facies.- 1.9.1.3. Hypabyssal Facies.- 1.9.1.4. Spatial Relationships between Diatreme and Hypabyssal Facies Kimberlites.- 1.9.2. Orangeites.- 1.9.3. Melilitite Clan.- 1.10. Petrographic Characteristics of Orangeite.- 1.11. Petrographic Differences with Respect to Kimberlites.- 1.12. Petrographic Differences with Respect to Lamproites.- 2. Mineralogy of Orangeites.- 2.1. Mica.- 2.1.1. Paragenesis.- 2.1.2. Composition of Primary Mica.- 2.1.2.1. Al2O3-TiO2 Variation.- 2.1.2.2. Al2O3-FeOT Variation.- 2.1.2.3. Macrocrysts versus Microphenocrysts.- 2.1.2.4. Minor Elements.- 2.1.2.5. Trace Elements.- 2.1.3. Aluminous Mica-Microxenoliths.- 2.1.4. Aluminous Biotite Macrocrysts.- 2.1.5. Micas from the Swartruggens Male Lamprophyre.- 2.1.6. Summary of Mica Compositional Variation.- 2.1.7. Solid Solutions in Orangeite Mica.- 2.1.8. Mica in Kimberlites.- 2.1.8.1. Macrocrysts.- 2.1.8.2. Primary Micas.- 2.1.8.3. Summary of Kimberlite Mica Compositional Variation.- 2.1.9. Mica in Lamproites.- 2.1.10. Mica in Minettes.- 2.1.11. Mica in Ultramafic Lamprophyres.- 2.2. Clinopyroxene.- 2.2.1. Paragenesis.- 2.2.2. Composition.- 2.2.2.1. Diopside.- 2.2.2.2. Titanian Aegirine.- 2.2.2.3. Minor Elements.- 2.2.3. Pyroxenes in the Swartruggens Male Lamprophyre..- 2.2.4. Megacrystal Pyroxenes.- 2.2.5. Comparison with Pyroxenes in Kimberlites.- 2.2.6. Comparisons with Pyroxenes in Lamproites.- 2.2.7. Comparisons with Pyroxenes in Ultramafic Lamprophyres.- 2.2.8. Comparisons with Pyroxenes from Minettes.- 2.3. Olivine.- 2.3.1. Paragenesis.- 2.3.2. Composition.- 2.3.3. Comparisons with Olivines in Kimberlites.- 2.3.4. Comparisons with Olivines in Lamproites.- 2.4. Spinel.- 2.4.1. Paragenesis.- 2.4.2. Composition.- 2.4.3. Comparisons with Kimberlite Spinels.- 2.4.4. Spinel Compositional Variation in Lamproites and Lamprophyres.- 2.5. Potassium Barium Titanates.- 2.5.1. Hollandite.- 2.5.1.1. Paragenesis.- 2.5.1.2. Composition.- 2.5.1.3. Comparison with Hollandites from Lamproites, Kimberlites, and Other Potassic Rocks.- 2.5.2. Potassium Triskaidecatitanate.- 2.5.3. Barium Pentatitanate.- 2.6. Perovskite.- 2.6.1. Paragenesis.- 2.6.2. Composition.- 2.6.3. Comparison with Perovskites from Kimberlite.- 2.6.4. Comparison with Lamproite Perovskite.- 2.7. Phosphates.- 2.7.1. Apatite.- 2.7.1.1. Paragenesis.- 2.7.1.2. Composition.- 2.7.1.3. Comparison with Kimberlite and Lamproite Apatite.- 2.7.2. Daqingshanite.- 2.7.3. Monazite.- 2.7.4. Sr-REE Phosphate.- 2.8. Amphiboles-Potassium Richterite.- 2.8.1. Paragenesis.- 2.8.2. Composition.- 2.8.3. Comparison with Potassium Richterite in Lamproite and Other Potassic Rocks.- 2.9. Potassium Feldspar.- 2.10. Ilmenite.- 2.10.1. Comparison with Groundmass Ilmenites from Kimberlites.- 2.10.2. Comparison with Ilmenites in Lamproites.- 2.11. Rutile.- 2.12. Zirconium Silicates.- 2.12.1. Zircon.- 2.12.2. Wadeite.- 2.12.3. Zirconium-Bearing Gar
This book is an outcome of the twenty-sixth symposium on "Rock Mechanics: Research and Engineering Applications in Rock Masses" in U.S. It focuses on the problems associated with rock mass and many experiments and modeling techniques are being performed in this area.
Provides a very clear guide to sedimentary rock types as seen under the microscope supported by practical aspects of slide preparation.
To many of us, the Earth's crust is a relic of ancient, unknowable history. But to a geologist, stones are richly illustrated narratives, telling gothic tales of cataclysm and reincarnation. For more than four billion years, in beach sand, granite, and garnet schists, the planet has kept a rich and idiosyncratic journal of its past. Fulbright Scholar Marcia Bjornerud takes the reader along on an eye-opening tour of Deep Time, explaining in elegant prose what we see and feel beneath our feet. Both scientist and storyteller, Bjornerud uses anecdotes and metaphors to remind us that our home is a living thing with lessons to teach. Containing a glossary and detailed timescale, as well as vivid descriptions and historic accounts, "Reading the Rocks" is literally a history of the world, for all friends of the Earth.
This textbook provides an overview of the origin and preservation of carbonate sedimentary rocks. The focus is on limestones and dolostones and the sediments from which they are derived. The approach is general and universal and draws heavily on fundamental discoveries, arresting interpretations, and keystone syntheses that have been developed over the last five decades. The book is designed as a teaching tool for upper level undergraduate classes, a fundamental reference for graduate and research students, and a scholarly source of information for practicing professionals whose expertise lies outside this specialty. The approach is rigorous, with every chapter being designed as a separate lecture on a specific topic that is encased within a larger scheme. The text is profusely illustrated with all colour diagrams and images of rocks, subsurface cores, thin sections, modern sediments, and underwater seascapes. Additional resources for this book can be found at: www.wiley.com/go/james/carbonaterocks
The "Second Edition" of this unique pocket field guide has been thoroughly revised and updated to include advances in physical volcanology, emplacement of magmas and interpreting structures and textures in igneous rocks. The book integrates new field based techniques (AMS and geophysical studies of pluton shape) with new topics on magma mixing and mingling, sill emplacement and magma sediment interaction. Part of the successful Field Guide series, this book includes revised sections on granitic and basaltic rocks and for the first time a new chapter on the engineering properties of igneous rocks. The "Geological Field Guide Series" is specifically designed for scientists and students to use in the field when information and resources may be more difficult to access. Many editions have been updated for 2011 and the guides are: Student-friendly in design and costDurableLightweightPocket-sizedReliableConcise Visit the series homepage at www.wiley.com/go/geologicalfield
The hydrogeologic environment of fractured rocks represents vital natural systems, examples of which occur on every continent. This book discusses key issues, methodologies and techniques in the hydrogeology of fractured rocks, summarizing recent progress and anticipating the outcome of future investigations. Forty-four revised and updated papers were selected from extended abstracts presented at the International Conference on Groundwater in Fractured Rocks, held in Prague in 2003 and these provide a valuable benchmark reference for studies in fractured rock hydrogeology worldwide. Topics include sustainable groundwater development, groundwater protection and management, new and improved approaches to the investigating hydrogeology of fractured systems, understanding of hydrogeologic properties both on local and regional scales, and both quantitative and qualitative aspects of groundwater flow and solute/contaminant transport. |
You may like...
|