![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Petrology
Processes involved in the development of igneous and metamorphic rocks involve some combination of crystal growth, solution, movement and deformation, which is expressed as changes in texture (microstructure). Advances in the quantification of aspects of crystalline rock textures, such as crystal size, shape, orientation and position, have opened fresh avenues of research that extend and complement the more dominant chemical and isotopic studies. This book discusses the aspects of petrological theory necessary to understand the development of crystalline rock texture. It develops the methodological basis of quantitative textural measurements and shows how much can be achieved with limited resources. Typical applications to petrological problems are discussed for each type of measurement. This book will be of great interest to all researchers and graduate students in petrology.
Presenting a rigorous treatment of the physical and mechanical basis for the modelling of sedimentary basins, this book supplies geoscientists with practical tools for creating their own models. It begins with a thorough grounding in properties of porous media, linear elasticity, continuum mechanics and rock compressibility. Chapters on heat flow, subsidence, rheology, flexure and gravity consider sedimentary basins in the context of the Earth's lithosphere, and the book concludes with coverage of pore space cementation, compaction and fluid flow. The volume introduces basic, state-of-the-art models and demonstrates how to reproduce results using tools like MATLAB (R) and Octave. Main equations are derived from first principles, and their basic solutions are obtained and then applied. Separate notes sections supply more technical details, and the text is illustrated throughout with real-world examples, applications and test exercises. This is an accessible introduction to quantitative modelling of basins for graduate students, researchers and oil industry professionals.
'Every person on earth uses, either directly or indirectly, ten metric tons of minerals each year.' So write Dr R. V. Dietrich and Dr Brian J. Skinner in their new book Gems, Granites, and Gravels. Minerals and mineral products are involved in all aspects of our lives; we depend on them to keep us alive and ensure the continuity of our society. As a consequence, they have been a source of fascination and study throughout human history. In this book, Drs Dietrich and Skinner consider not only the beauty of minerals and rocks, but also their utility and their roles in our everyday well-being. Gems, Granites and Gravels is a valuable introduction to mineralogy and to related specialities such as petrology (the study of rocks), crystallography (the study of crystals), and soil science. Discoveries in these fields are described in a historical context, while the authors explain what minerals and rocks are, how they are distributed around the world, how we depend on them, and where to see the most beautiful specimens of both minerals and rocks. This book will appeal to anyone interested in natural history and curious about rocks and minerals, including rock and mineral collectors, students of geology, and professional geologists.
The evolution and differentiation of the continental crust pose fundamental questions that are being addressed by new research concerning melting, melt extraction and transport through the crust, and the effect of melt on crustal rheology. Insights into crustal processes have been triggered by combined field observations and laboratory experiments, supported by developments in numerical modelling. Opening chapters cover the structure of the continents, controls on heat production and the composition, differentiation and evolution of continental crust. The role of arc magmatism in the Phanerozoic and crustal generation in the Archean are addressed. Two regional examples illustrate the modification and differentiation of continental crust. Process-oriented chapters cover melting, melt extraction and migration, and crustal rheology. The final chapters review the emplacement and growth of plutons and outline a modeling approach to the physical controls on crustal differentiation. This is a valuable summary of recent advances for graduate students and research workers.
Komatiites erupted billions of years ago as pulsating streams of white-hot lava. Their unusual chemical compositions and exceptionally high formation temperatures produced highly fluid lava that crystallized as spectacular layered flows. Investigation of the extreme conditions in which komatiites formed provides important evidence about the thermal and chemical evolution of the planet, and the nature of the Precambrian mantle. This monograph, written by three experts with long experience in the field, presents a complete account of the characteristics of komatiites including their volcanic structures, textures, mineralogy and chemical compositions. Models for their formation and eruption are evaluated (including the anhydrous vs. hydrous magmas controversy). A chapter is also devoted to the valuable nickel and copper ore deposits found in komatiites. Komatiite is a key reference for researchers and advanced students interested in petrology, Archaean geology, economic geology, and broader questions about the evolution of the Earth's crust and mantle.
Much of the world's surface, even under the oceans, is covered in thick deposits of sedimentary particles - gravel, sand, silt and clay. The nature of the deposits and their formation is very much dependent on the distribution of particles of different sizes. However, different instruments measure different attributes of a particle's size, based on how fast a particle settles in water, or the surface area of a particle, or its length. This book provides information on the how and why of particle size analysis in terms of understanding these sediment deposits.
Processes involved in the development of igneous and metamorphic rocks involve some combination of crystal growth, solution, movement and deformation, which is expressed as changes in texture (microstructure). Recent advances in the quantification of aspects of crystalline rock textures, such as crystal size, shape, orientation and position, have opened new avenues of research that extend and complement the more dominant chemical and isotopic studies. This book discusses the aspects of petrological theory necessary to understand the development of crystalline rock texture. It develops the methodological basis of quantitative textural measurements and shows how much can be achieved with limited resources. Typical applications to petrological problems are discussed for each type of measurement. The book has an associated web page with up-to-date information on textural analysis software, both commercial and free. This book will be of great interest to all researchers and graduate students in petrology.
While the chemical aspects of igneous petrology have dominated research for many years, the physical processes associated with the generation, transport, and crystallization of magma have been somewhat neglected. Here a group of distinguished scientists, whose current research embraces both chemical and physical aspects of the field, illustrates these new directions in igneous petrology. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Now fully updated to cover recent developments, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms an up-to-date text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.
Recent discoveries of diamond and coesite in the upper crustal rocks of the Earth have drastically changed scientists' ideas concerning the limits of crustal metamorphism. This book provides detailed accounts of the discoveries of diamond and coesite in crustal rocks and provides insights regarding their formation at very high pressures. The formation of these minerals is related to subduction and continental collision and the tectonics, petrological and mineralogical conditions of diamond and coesite formation are each discussed. Written by the leading workers in this exciting field, this book attempts to define an entirely new field of metamorphism - ultrahigh pressure metamorphism (UHPM). In doing so, it explains the formation of ultrahigh pressure minerals and explores new ideas regarding the tectonic setting of this style of metamorphism. This book will be of particular interest to researchers and graduate students of metamorphic petrology and global tectonics.
Microscopic organic-walled fossils are found in most sedimentary rocks. The organic particles - spores, pollens and other land and marine derived microfossils, representing animals, plants, fungi and protists - can be extracted and used to date the rock, reveal details of the original sedimentary environment and provide information on the climate of the time. The mix within a sediment of whole organic particles - palynomorphs - and organic fragments - palynodebris - form palynofacies. This book presents research work on the sedimentation of components of palynofacies and details their importance for sequence stratigraphy and the interpretation of ancient biologic and geologic environments. A comprehensive introduction to the subject is presented in the first chapter. Palynosedimentation in modern environments, the reconstruction of terrestrial vegetation and the application of the data to sequence stratigraphy are then considered. Later chapters detail various quantitative methods and their specific applications in the subject. This is a valuable reference work for palynologists and sedimentologists and also for paleobiologists, and for professionals working in the hydrocarbons industries.
Decades of field and microscope studies, and more recent quantitative geochemical analyses have resulted in a vast, and sometimes overwhelming, array of nomenclature and terminology associated with igneous rocks. This book presents a complete classification of igneous rocks based on all the recommendations of the International Union of Geological Sciences (IUGS) Subcommission on the Systematics of Igneous Rocks. The glossary of igneous terms has been fully updated since the first edition and now includes 1637 entries, of which 316 are recommended by the Subcommission. Incorporating a comprehensive bibliography of source references for all the terms included in the glossary, this book is an indispensable reference guide for all geologists studying igneous rocks, either in the field or the laboratory. It presents a standardised and widely accepted naming scheme that will allow geologists to interpret terminology in the primary literature and provide formal names for rock samples based on petrographic analyses. It is also supported by a website with downloadable code for chemical classifications.
Diagenesis refers to changes taking place in sediments after deposition. In a theoretical treatment of early diagenesis, Robert Berner shows how a rigorous development of the mathematical modeling of diagenetic processes can be useful to the understanding and interpretation of both experimental and field observations. His book is unique in that the models are based on quantitative rate expressions, in contrast to the qualitative descriptions that have dominated the field. In the opening chapters, the author develops the mathematical theory of early diagenesis, introducing a general diagenetic equation and discussing it in terms of each major diagenetic process. Included are the derivations of basic rate equations for diffusion, compaction, pore-water flow, burial advection, bioturbation, adsorption, radioactive decay, and especially chemical and biochemical reactions. Drawing on examples from the recent literature on continental-margin, pelagic, and non-marine sediments, he then illustrates the power of these diagenetic models in the study of such deposits. The book is intended not only for earth scientists studying sediments and sedimentary rocks, but also for researchers in fields such as radioactive waste disposal, petroleum and economic geology, environmental pollution, and sea-floor engineering.
In recent years there has been growing recognition that disaster risk cannot be reduced by focusing solely on physical hazards without considering factors that influence socio-economic impact. Vulnerability: the susceptibility to the damaging impacts of hazards, and resilience: the ability to recover, have become popular concepts in natural hazard and risk management. This book provides a comprehensive overview of the concepts of vulnerability and resilience and their application to natural hazards research. With contributions from both physical and social scientists it provides an interdisciplinary discussion of the different types of vulnerability and resilience, the links between them, and concludes with the remaining challenges and future directions of the field. Examining global case studies from the US coast to Austria, this is a valuable reference for researchers and graduate students working in natural hazard and risk reduction from both the natural and social sciences.
"Low-Grade Metamorphism" explores processes and transformations in
rocks during the early stages of metamorphic recrystallization.
There has been little analysis and documentation of this widespread
phenomenon, especially of the substantial and exciting advances
that have taken place in the subject over the last decade. This
book rectifies that shortfall, building on the foundations of
"Low-Temperature Metamorphism" by Martin Frey (1987). The editors
have invited contributions from an internationally acknowledged
team of experts, who have aimed the book at advanced undergraduate
and graduate students as well as researchers in the field.
A clear understanding of the processes responsible for observed rock microstructures is essential for making reliable petrogenetic interpretations, including inferences made from chemical and isotopic analyses of minerals. This volume presents a comprehensive survey of rock microstructures, emphasising basic concepts and the latest methods, while highlighting potential pitfalls in the interpretation of the origin of rock microstructure. Richly illustrated with over 250 colour photographs, including more than 10 percent new photomicrographs and several mesoscopic images, it demonstrates the basic processes responsible for the wide variety of microstructures in igneous, metamorphic and sedimentary rocks. This second edition includes extensive updates to the coverage of igneous rocks as well as recent ideas on physical processes in migmatites and partial melting of sedimentary rocks. This practical guide will continue to be an invaluable resource to advanced students and early-career researchers of mineralogy, petrology and structural geology, as well as professional geologists and material scientists.
All Earth Science students need to understand the origins, environments, and basic processes that produce igneous and metamorphic rocks. This concise introductory textbook provides students with the essential knowledge needed to understand how petrology relates to other topics in the geologic sciences, and has been written specifically for one-semester courses. Throughout, the emphasis is on interpreting the mineralogy and petrology of rock suites in terms of origin and environment, with the first half of the book concentrating on igneous rocks, and the second half on metamorphic rocks. This Second Edition has been thoroughly revised and brought completely up-to-date. It now includes a new chapter on the application of stable and radiogenic isotopes in petrology, introducing students to the concept of isotopic fractionation and describing the process of radioactive decay. The discussions of phase diagrams, connections between igneous and metamorphic rock suites, and convergent margin magmatism have also been expanded. There is a new glossary of terms, updated end-of-chapter exercises, and updated further readings.
People have been fascinated by minerals since prehistory. The attractions of minerals lie in their colours, their beautiful crystals and the discoveries of their uses and the metals that can be obtained from them. Minerals receive attention from a wide variety of people: mining executives, collectors, prospectors and scientists unravelling their molecular structure and origins. But, for someone new to mineralogy, the subject can appear to be overwhelmingly complex. In Introducing Mineralogy John Mason considers the essence of mineralogy in a clear and logical manner. The book begins with the basic chemistry of minerals and the way in which the mineral kingdom is classified. It then considers mineral occurrences, both typical, such as the minerals that largely make up common rocks like granite, and atypical, such as concentrations of rare metals in ore-deposits. The ways in which minerals are studied using microscopes and the importance of careful observation and interpretation are discussed and the topics of mineral collecting and related issues are addressed. The final chapters explore the uses of minerals, both industrial and scientific, and take a look at environmental issues associated with mineral extraction and usage Lavishly illustrated in colour and complete with a glossary, the book is aimed at students embarking on courses in the Earth Sciences and at the amateur collector who wants to find out more about the colourful rocks they may find when out walking.
Carbonate rocks are of fundamental importance in many respects: in the manufacture of cement, as building stone and aggregates, and they form the reservoirs for about 40% of the world's oil reserves. In engineering terms they frequently underly the most intractable geotechnical problems and often provide the foundations for coastal structures and offshore structures.;This book provides the geological background to carbonate sediments and rocks and furnishes basic information on the compositions, origins, and distributions of carbonate sediments. The descriptions that follow provide models for the earth scientist and a predictive framework for engineering works in such areas. It provides a basic reference tool for the geologist and a reference framework in which the practising engineer unfamiliar with terms is able to understand and evaluate reports provided by experts from other fields. Case studies provide further elucidation.;Readership: practitioners and students in earth science, engineering geology, petroleum geology, foundation and civil engineering.
Granites are emblematic rocks developed from a magma that crystallized in the Earth's crust. They ultimately outcrop at the surface of every continent. This book offers a modern presentation of granitic rocks. It considers granites in their geological spatial and temporal frame, and in relation to plate tectonics and Earth history. The book - translated, edited, and updated from the original French edition Petrologie des Granites published by Vuibert in 2011 - gives a modern presentation of granitic rocks, or granites, from magma genesis to their emplacement into the crust and their crystallization. Mineralogical, petrological, physical, and economical aspects are explored and developed in a succession. The text is supported throughout by a large number of illustrations, descriptions of modern techniques, and additional boxes holding further discussions for those wishing to deepen their knowledge of the subject.
This new edition includes updated case studies, examples and
experiments as well as a new chapter on modeling and simulations.
It also includes recent advances in wireline logging interpretation
methods, effective media models, inversion of resistivity log
measurements, dipole acoustic shear and Stoneley wave techniques,
Biot-Gassmann models andMRI.
Petrogenesis of Metamorphic Rocks presents a large number of diagrams showing the stability relations among minerals and groups of minerals found in metamorphic rocks. The diagrams help to determine the pressure and temperature conditions under which a given set of metamorphic rocks may have formed. Other parameters that control metamorphic mineral assemblages are also discussed and pitfalls resulting from simplifications and generalizations are highlighted. The book discusses the most common metamorphic rock types, their nomenclature, structure and graphical representation of their mineral assemblages. Part I defines basic principles of metamorphism, introduces metamorphic processes, geologic thermometry and barometry and defines metamorphic grade. Part II presents in a systematic way mineralogical changes and assemblages found in the most common types of metamorphic rocks. The computation of diagrams is based on recent advances in quantitative petrology and geochemistry. An extensive bibliography, including the key contributions and classic papers in the field, make it an invaluable source book for graduate students and professional geologists.
Geosequestration involves the deep geological storage of carbon dioxide from major industrial sources, providing a potential solution for reducing the rate of increase of atmospheric concentrations of carbon dioxide and mitigating climate change. This volume provides an overview of the major geophysical techniques and analysis methods for monitoring the movement and predictability of carbon dioxide plumes underground. Comprising chapters from eminent researchers, the book is illustrated with practical examples and case studies of active projects and government initiatives, and discusses their successes and remaining challenges. A key case study from Norway demonstrates how governments and other stake-holders could estimate storage capacity and design storage projects that meet the requirements of regulatory authorities. Presenting reasons for embracing geosequestration, technical best practice for carbon management, and outlooks for the future, this volume provides a key reference for academic researchers, industry practitioners and graduate students looking to gain insight into subsurface carbon management. |
![]() ![]() You may like...
Artificial Intelligence Applications in…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R8,676
Discovery Miles 86 760
Intro to Python for Computer Science and…
Paul Deitel
Paperback
Building a Scalable Data Warehouse with…
Dan Linstedt, Michael Olschimke
Paperback
Digitisation of Culture: Namibian and…
Dharm Singh Jat, Jurgen Sieck, …
Hardcover
R2,916
Discovery Miles 29 160
Data Deduplication for Data Optimization…
Daehee Kim, Sejun Song, …
Hardcover
Machine Learning for Intelligent…
Jitendra Kumar Rout, Minakhi Rout, …
Hardcover
R4,604
Discovery Miles 46 040
Seismic Forward Modeling of Fractures…
XiaoQin Cui, Laurence Lines, …
Hardcover
R4,067
Discovery Miles 40 670
|