![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Petrology
Mechanical properties and fluid transport in rocks are intimately linked as deformation of a solid rock matrix immediately affects the pore space and permeability. This may result in transient or permanent changes of pore pressures and effective pressures causing rock strength to vary in space and time. Fluid circulation and deformation processes in crustal rocks are coupled, producing significant complexity of mechanical and fluid transport behavior. This often poses severe technical and economic problems for reservoir and geotechnical engineering projects involved in oil and gas production, CO2 sequestration, mining and underground waste disposal. For example, the depletion of hydrocarbon and water reservoirs leading to compaction may have adverse effects on well production. Solution/precipitation processes modify porosity and affect permeability of aquifers and reservoir rocks. Fracture damage from underground excavation will critically influence the long-term stability and performance of waste storage. Part I of this topical volume covers mainly the nucleation and evolution of crack damage in rocks, new or modified techniques to measure rock fracture toughness and a discussion of upscaling techniques relating mechanical and fluid transport behaviour in rocks at different spatial scales. Part II, to be published later in 2006, will include studies investigating the coupling of rock deformation and fluid flow.
As a major text in igneous petrology, this innovative book
offers a much-needed, radically different approach to the study of
igneous rocks. Bridging a long-recognized gap in the literature by
providing petrogenic models for magmatismin terms of global
tectonic processes, it encompasses geophysics and geochemistry in a
comprehensive treatment of the subject. Marge Wilson graduated in geology at the University of Oxford. She then spent a year at the University of California, Berkeley, and subsequently studied the petrogenesis of nepheline syenites from the Gardar province of Greenland, leading to a PhD from the University of Leeds. Her research has focused on island-arc, oceanic-island and intra-continental plate tectonic settings.
Minerals in sedimentary rocks emit characteristic visible luminescence called cathodoluminescence (CL) when bombarded by high energy electrons. CL emissions can be displayed as colour images in a cathodoluminescence microscope or as high-resolution monochromatic images in a scanning electron microscope. This provides information not available by other techniques on the provenance of the mineral grains in sedimentary rocks, and insights into diagenetic changes. The book, first published in 2006, begins with an easily understood presentation of the fundamental principles of CL imaging. This is followed by a description and discussion of the instruments used in CL imaging, and a detailed account of its applications to the study of sedimentary rocks. The volume is a comprehensive, easily understood description of the applications of cathodoluminescence imaging to the study of sedimentary rocks. It will be an important resource for academic researchers, industry professionals and advanced graduate students in sedimentary geology.
Geomaterials are of enormous economic importance to the global construction industry. This is the first comprehensive guide to the petrography of geomaterials, making the petrographers specialist knowledge available to practitioners, educators and students worldwide interested in modern and historic construction materials, be they microscopists or in the fields of geology, architecture, surveying, engineering, construction, archaeology, conservation, materials science and forensic science. The book provides some 365 superb quality colour photomicrographs of geomaterials plus concise explanations of their petrographic properties and how to interpret them. An introductory chapter provides an overview of geomaterials practice and a state-of-the-art review of petrographic techniques. Each of the subsequent chapters covers a different group of construction materials and includes an explanation of their history, manufacture and use in construction. The text draws upon diverse published references to provide a unique summary of the properties and classification of construction materials. Comprehensive lists of further reading are provided for each materials type. Readership: Practitioners, educators and students in Petrography, Microscopy, Geology, Surveying, Engineering, Archaeology, Conservation, Architecture, Materials science and Forensic science.
This textbook is a complete rewrite, and expansion of Hugh Rollinson's highly successful 1993 book Using Geochemical Data: Evaluation, Presentation, Interpretation. Rollinson and Pease's new book covers the explosion in geochemical thinking over the past three decades, as new instruments and techniques have come online. It provides a comprehensive overview of how modern geochemical data are used in the understanding of geological and petrological processes. It covers major element, trace element, and radiogenic and stable isotope geochemistry. It explains the potential of many geochemical techniques, provides examples of their application, and emphasizes how to interpret the resulting data. Additional topics covered include the critical statistical analysis of geochemical data, current geochemical techniques, effective display of geochemical data, and the application of data in problem solving and identifying petrogenetic processes within a geological context. It will be invaluable for all graduate students, researchers, and professionals using geochemical techniques.
This is the first authoritative reference on rock mass classification, consolidating into one handy source information once widely scattered throughout the literature. It includes new, previously unpublished material and case histories, presents the fundamental concepts of classification schemes, and critically appraises their practical application in industrial projects such as tunneling and mining.
Most of the world's energy still comes from fossil fuels, and there are still many strides being made in the efficiency and cost effectiveness of extracting these important and increasingly more elusive natural resources. This is only possible if the nature of the emergence, evolution, and parameter estimation of high grade reservoir rocks at great depths is known and a theory of their forecast is developed. Over 60 percent of world oil production is currently associated with carbonate reservoir rocks. The exploration, appraisal and development of these fields are significantly complicated by a number of factors. These factors include the structural complexity of the carbonate complexes, variability of the reservoir rock types and properties within a particular deposit, many unknowns in the evaluation of fracturing and its spatial variability, and the preservation of the reservoir rock qualities with depth. The main objective of most studies is discovering patterns in the reservoir rock property changes of carbonate deposits of different genesis, composition and age. A short list of the unsolved issues includes: the role of facies environment in the carbonate formation; the major geologic factors affecting the formation of high-capacity reservoir rocks and preservation of their properties; recommendations as to the use of the new techniques in studies of the structural parameters; and establishing a correlation between the major evaluation parameters. The focus of this volume is to show the scientific and engineering community a revolutionary process. The author perfected an earlier developed methodology in studies of the void space structure (Bagrintseva's method, 1982). This methodology is based on carbonate rock saturation with luminophore and on special techniques in processing of photographs made under UV light. The luminophore technique was combined with the raster electron microscopy and its variation, the studies under the cathode luminescence regime. This combination enabled a more detailed study of the reservoir void space, the nonuniformity in the open fracture evolution, their morphology, length and variability of openness. Over recent years these techniques have found wide application. Useful for the veteran engineer or scientist and the student alike, this book is a must-have for any geologist, engineer, or student working in the field of upstream petroleum engineering.
This book is mainly about the field geology of granites at all scales from that of a single outcrop to plutons and batholiths. All field geologists work initially at the scale of the outcrop, consequently most of the phenomena treated herein are those which are visible at outcrop scale. However, granites typically occur as plutons and batholiths, some of which are so large as to apparently defy any effort at systematic treatment. Having had the opportunity of mapping two very large and very different batholiths, namely the Coastal Batholith of Peru and the tin granites of Southeast Asia, I have found that it is possible to map large batholiths within a relatively short time, so that the geology of the batholith as a whole can be appreciated. Moreover batholiths are one of the most common modes of granite occurrence, so it makes sense to study them at their natural scale. During my working life I have worked with many geologists from underdevel oped countries and this book is mainly to help them in unravelling the geology of their native batholiths. I have been lucky with my friends and colleagues of many nationalities, and I particularly thank Wallace Pitcher, who took me on as an untried apprentice in Peru, and who, by his kindness and example, showed me how to look at granites properly.
courses more petrogenesis-orientated are im My main objective in writing this book has been to mediately confronted with a basic problem; the review the processes involved in present-day mag ma generation and their relationship to global average student does not have a strong enough tectonic processes. Clearly, these are fundamental background in geochemistry to understand the to our understanding of the petrogenesis of ancient finer points of most of the relevant publications in volcanic and plutonic sequences, the original tec scientific journals. It is virtually impossible to fmd tonic setting of which may have been obscured by suitable reading material for such students, as most subsequent deformation and metamorphism. authors of igneous petrology textbooks have de Until fairly recently, undergraduate courses in liberately steered clear of potentially controversial igneous petrology tended to follow rather classical petrogenetic models. Even the most recent texts lines, based on the classification of igneous rocks, place very little emphasis on the geochemistry of descriptive petrography, volcanic landforms, types magmas erupted in different tectonic settings, of igneous intrusions and regional petrology . despite extensive discussions of the processes re However, the geologist of the late 1980s requires, in sponsible for the chemical diversity of magmas.
One of the major developments in Earth Sciences in general, and mineralogy in particular, has been the growth of our understanding of the microscopic behaviour of the complex materials that make up the Earth. This has been made possible by advances in our ability to probe minerals at the atomic level, over a large range of pressure and temperature conditions. New experimental techniques include the use of scanning probe microscopies to investigate mineral surfaces, as well as the use of neutron scattering, nuclear spectroscopies and synchrotron radiation to investigate the bonding and structure of minerals. In addition, there have been major developments in computational methods so that it is now possible to calculate the electronic structure of many rock forming materials. The aim of this volume is to give a coherent survey of the latest developments in experimental and theoretical approaches to the study of microscopic propertie~ and processes in minerals. Chapters in the book cover a number of key themes in the mineral sciences such as the behaviour of minerals at extremes of pressure and temperature, ordering in complex silicates, mechanisms of water incorporation in mantle phases, the importance of reactions occurring at the mineral surface, and the ability of computational methods to provide useful, qualitative information on the bulk and surface properties of minerals. The background to several experimental techniques is covered in some detail with examples of relevance to the issues cited above.
This concise, clear and handy-sized volume, aimed at the undergraduate level, provides an introduction to the observation, description and identifi cation in thin section, using the polarizing microscope, of samples of the commonlyoccurring rocks and minerals. Illustrated with a wealth of full colour thin section photomicrographs, and with the original images enhanced by new examples and a revised text, the book explains how to observe mineral and rock samples under the microscope. The book highlights the important diagnostic features of minerals and deals with all rock types - igneous, sedimentary and metamorphic - each with equal emphasis and authority, giving students the knowledge and confi dence to begin to identify specimens for themselves. While intended for students in geology, geography, civil engineering and materials science, the book stands on its own as a beautiful collection of photomicrographs and a permanent source of reference and fascination for all those interested in the nature and science of the world of rocks and minerals.
Chemical modifications of supracrustal materials have occurred at various times in the Earth's history. This reference book gives an overlook over themost recent findings of isotope research in the sedimentary environment. The reader, interested in the diagnetic evolution of sediments, can use the book as a tool for the understanding of mineral-water interactions in the supracrustal level.
This is the first modern text to provide a thorough integrated treatment of those parts of the subject that use the polarizing microscope as the central analytical tool. The book is divided into three parts and a comprehensive glossary/index provides easy access to the contents of the book.
The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.
There has been a great advance in the understanding of processes of meta morphism and of metamorphic rocks since the last edition of this book appeared. Methods for determining temperatures and pressures have become almost routine, and there is a wide appreciation that there is not a single temperature and pressure of metamorphism, but that rocks may preserve, in their minerals, chemistry and textures, traces of their history of burial, heating, deformation and permeation by fluids. However, this excit ing new knowledge is still often difficult for non-specialists to understand, and this book, like the first edition, aims at enlightenment. I have concen trated on the interpretation of the plate tectonic settings of metamorphism, rather than following a geochemical approach. Although there is an impress ive degree of agreement between the two, I believe that attempting to discover the tectonic conditions accompanying rock recrystallization will more readily arouse the interest of the beginner. I have used a series of case histories, as in the first edition, drawing on my own direct experience as far as possible. This m~ns that some subjects are treated in more detail than others, and many important topics are barely mentioned at all. It also means that general concepts appear in a rather haphazard order in the text. To help my readers, I have provided a glossary of definitions of terms used in the book, which are indicated in bold type in the text.
Although there are numerous publications on the geology of high-grade gneiss terrains, few descriptions exist of how to map and carry out structural analysis in these terrains. Textbooks on structural geology concentrate on technIques appli cable to low-grade terrains. Geologists who have no experience of mapping high-grade gneisses are often at a loss as to how to apply techniques to high grade rocks that were developed for low to medium grade metamorphic terrains. Any study of deep crustal processes and their development through time should begin with examination of the primary data source - outcrops of high grade metamorphic terrains. We feel that the urge to apply advanced techniques of fabric analysis, petrology, geochemistry, isotope geochemistry and age deter mination to these rocks often results in brief sampling trips in which there is little, if any analysis of the structural and metamorphic history revealed by outcrop patterns. Many studies of the metamorphic petrology and geochemistry of high-grade gneiss terrains make ineffective use of available field data, often because the authors are unaware of structural complexities and of the ways to recognise and use them. This is unfortunate, because much data can be collected in the field at minimal cost that cannot easily, if at all, be obtained from material in the laboratory. The primary igneous or sedimentary nature of a rock, the relative age of intrusive veins, and the sequence of deformation that they under went, can usually best be determined by straightforward observation in the field.
Metallogeny of Tin attempts to develop a general metallogenic model for tin in identifying the essential or relevant processes in tin ore formation. The methodological principle is based on an interplay between a background of basic petrogenetic concepts and a number of specific local and regional data on tin deposits and tin provinces. The author condenses the many apparently specific complexities encountered in individual ore deposits to a few major processes of general importance.
Landscapes viewed from afar have a timeless quality that is soothing to the human spirit. Yet a tranquil wilderness scene is but a snapshot in the steady stream of surficial change. Wind, water and human activities reshape the landscape by means of gradual to catastrophic and usually irreversible events. Much of this change destroys past landscapes, but at some times and places, landscapes are buried in the rock record. This work is dedicated to the discovery of past landscapes and their life through the fossil record of soils. A long history of surficial changes extending back almost to the origin of our planet can be deciphered from the study of these buried soils, or paleosols. Some rudiments of this history, and our place in it, are outlined in a final section of this book. But first it is necessary to learn something of the language of soils, of what happens to them when buried in the rock record and which of the forces of nature can be confidently reconstructed from their remains. Much of this preliminary material is borrowed from soil science, but throughout emphasis is laid on features that provide most reliable evidence of landscapes during the distant geological past. This book has evolved primarily as a text for senior level university courses in paleopedology: the study of fossil soils.
Environmental or applied geology maps are an important means of communicating earth science background information to land-use and development planners, administrators, and policymakers. This volume reviews the current state of applied earth science mapping. Sections are devoted to mapping technique
This book deals with microbial mats, stromatolites and coated grains. Recent and ancient stromatolitic ecosystems are described in peritidal environments, including siliciclastic, carbonaceous and evaporite-dominated back-barrier systems. Various relevant categories were distinguished: - mat-forming microbiota - environmental conditions controlling mat types and lithology - bioturbation and grazing. Recent and ancient microbial mat systems show a latitudinal arrangement which can be used for paleoclimatological and paleogeographical reconstructions. This book should be of special interest to sedimentologists, coastal engineers, ecologists, zoologists, salt plant engineers and marine scientists, as well as to students interested in these fields.
Groundwater constitutes an important component of many water resource systems, supplying water for domestic use, for industry, and for agriculture. Management of a groundwater system, an aquifer, or a system of aquifers, means making such decisions as to the total quantity of water to be withdrawn annually, the location of wells for pumping and for artificial recharge and their rates, and control conditions at aquifer boundaries. Not less important are decisions related to groundwater qUality. In fact, the quantity and quality problems cannot be separated. In many parts of the world, with the increased withdrawal of ground water, often beyond permissible limits, the quality of groundwater has been continuously deteriorating, causing much concern to both suppliers and users. In recent years, in addition to general groundwater quality aspects, public attention has been focused on groundwater contamination by hazardous industrial wastes, by leachate from landfills, by oil spills, and by agricultural activities such as the use of fertilizers, pesticides, and herbicides, and by radioactive waste in repositories located in deep geological formations, to mention some of the most acute contamination sources. In all these cases, management means making decisions to achieve goals without violating specified constraints. In order to enable the planner, or the decision maker, to compare alternative modes of action and to ensure that the constraints are not violated, a tool is needed that will provide information about the response of the system (the aquifer) to various alternatives."
Since the Second World War interest in the active by Italian geophysicists; studies of ground deform volcano Mount Etna, in Sicily, has been steadily ation by British and Italian groups; measurements increasing. This interest has not been restricted of microgravity changes particularly by a British to Italy, and scientists from Belgium, France, group; endeavours to improve analytical tech Germany, the United States and the United King niques for gases and sublimates by French and also dom have played a part in volcanological studies. Italian and British workers; pioneering work on In 1972 much of this work was drawn together at a rheology of lavas and growth of lava fields by discussion meeting convened by the Royal Society British scientists; and greatly improved surveil of London and attended by representatives of most lance of activity, notably that occurring in the summit region. of the projects that were being conducted on Etna. The meeting served to draw together current It is a principal aim of this book to synthesize the knowledge of Etna, especially information derived results of these many different studies into a more during the 1971 flank eruption, and also to point complete understanding of the volcano. Inevitably out deficiencies in knowledge and methods of the coverage is somewhat uneven; some fields of approach to investigating the volcano. In his study have been researched more thoroughly than opening statement to the meeting Professor A. others."
Conferenee on Industrialization, made the This study ex amines the faetors which affeet the loeation of mineral proeessing in developing following points: eountries. These ean be divided into two broad "National industrialization policies should eategories. The first of these eneompasses stress the objeetive of inereasing the extern al eeonomic and teehnieal elements affeeting the autonomy of the developing regions and countries, 1 basic vi ability of a projeet. These include eapital, with special attention to the promotion of skilled labour, raw materials, eomplementary exports ...(and) also seek to inerease the value inputs, energy, eeonomies of seale, teehnological added to raw materials being proeessed and ehange, growth in demand, proximity to export exported. markets and transport eosts. The seeond eonsists In the light of the foregoing, it is proposed that of struetural elements including sourees of finanee national industrialization policies should: (a) prp- and teehnology, trade and investment and mote integrated industrialization based on the taxation policies.
This book is for senior undergraduate or postgraduate students who want an insight into some modern approaches to metamorphic petrology. Its aims are to explain, in reasonably simple, informal terms, the processes underlying (i) metamorphic reactions and (ii) the production of micro structures in metamorphic rocks, these currently being the things that interest me most, geologically. The first aim requires discussion of equilibrium factors, reaction kinetics and reaction mechanisms, empha sising both the complexity of realistic reactions and the need to combine the chemical and microstructural approaches to them. The second aim requires discussion of deformation, recovery, recrystallisation and grain growth processes, with emphasis on experiments on silicate minerals. The book concludes with a general attempt to relate chemical and physical processes in metamorphism, although it will be clear from reading earlier chapters (especially Chapter 4) that the two aspects can rarely be separated completely in detailed metamorphic studies. Petrological and experimental investigations of metamorphic reactions and microstructural development are advancing so rapidly these days that students are faced with an ever-increasing volume of information and a relatively rapid obsolescence of data. So, in this book I do not try to be comprehensive, or to present much so-called 'factual' information. Instead, I deal more with basic principles, in the hope that these will guide the student in his or her encounters with the details of specific metamorphic problems."
The topic of sediment diagenesis is of fundamental importance to industry in the evaluation of hydrocarbon and water reservoir rocks. Detailed knowledge of the diagenetic textures, fabrics, and minerals, and a prediction of the regional diagenetic response, partly controls hydrocarbon recovery programmes. In other words, knowledge of the diagenesis can aid (or even control) conservation policy. Similarly, facies and diagenetic trends w.ithin basins can influence exploration policy. This volume incorporates the majority of the principal contributions given to the NATO Advanced Study Institute held in the University of Reading, U.K., from July 12th-25th, 1981, at which the major themes of carbonate and terrigenous clastic sediments were treated sequentially from deposition to deep burial. Eighty selected scientists from twelve NATO and three other countries participated in the Institute. The keynote addresses which acted as the touchstones for discussion are presented here in the expectation that they will stimulate a still wider audience. We gratefully acknowledge the award of a grant from the Scientific Affairs Division of NATO to run the Institute, and also the cooperation of the University of Reading. Mrs. D. M. Powell helped in many ways with the organisation, and also retyped the entire manuscript of this book. A. Parker B. lv. Sellwood vii FACIES, SEQUENCES AND SAND-BODIES OF THE PRINCIPAL CLASTIC DEPOSITIONAL ENVIRONMENTS T.Elliott Department of Geology University College of Swansea Singleton Park, Swansea SA 2 8PP Wales, U.K. |
![]() ![]() You may like...
The Early Permian Tarim Large Igneous…
Shufeng Yang, Han-lin Chen
Paperback
Geochemical Modelling of Igneous…
Vojtech Janousek, Jean-Francois Moyen, …
Hardcover
R4,266
Discovery Miles 42 660
Energy Potential of the Russian Arctic…
Alexey Piskarev, Mikhail Shkatov
Hardcover
R4,700
Discovery Miles 47 000
Geochemistry of Sedimentary Carbonates…
J.W. Morse, F.T. Mackenzie
Paperback
R1,491
Discovery Miles 14 910
Soil and Aquifer Pollution - Non-Aqueous…
Hillel Rubin, Nava Narkis, …
Hardcover
R5,832
Discovery Miles 58 320
Physical Properties of Rocks, Volume 8…
Juergen H. Schoen
Hardcover
|