Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This IMA Volume in Mathematics and its Applications AMORPHOUS POLYMERS AND NON-NEWTONIAN FLUIDS is in part the proceedings of a workshop which was an integral part of the 1984-85 IMA program on CONTINUUM PHYSICS AND PARTIAL DIFFERENTIAL EQUATIONS We are grateful to the Scientific Committee: Haim Brezis Constantine Dafermos Jerry Ericksen David Kinderlehrer for planning and implementing an exciting and stimulating year-long program. We espe cially thank the Program Organizers, Jerry Ericksen, David Kinderlehrer, Stephen Prager and Matthew Tirrell for organizing a workshop which brought together scientists and mathematicians in a variety of areas for a fruitful exchange of ideas. George R. Sell Hans Weinberger Preface Experiences with amorphous polymers have supplied much of the motivation for developing novel kinds of molecular theory, to try to deal with the more significant features of systems involving very large molecules with many degrees offreedom. Similarly, the observations of many unusual macroscopic phenomena has stimulated efforts to develop linear and nonlinear theories of viscoelasticity to describe them. In either event, we are confronted not with a well-established, specific set of equations, but with a variety of equations, conforming to a loose pattern and suggested by general kinds of reasoning. One challenge is to devise techniques for finding equations capable of delivering definite and reliable predictions. Related to this is the issue of discovering ways to better grasp the nature of solutions ofthose equations showing some promise."
Unlike previous volumes in the series for colloid and surface scientists, revolves generally around two topics: surfactants and polymers. The six papers discuss micelles of block and graft copolymers in solutions, surfactant association in nonaqueous media, a study of the boundary viscosity of organ
The purpose of the preface is to explain the book's objectives and how to use it; give warnings, disclaimers, and the like.* The main objective of Protein and Peptide Analysis by Mass Spec trometry is quite straightforward-to present authoritative, up-to-date, and practical accounts of the use of mass spectrometry in the analysis of pep tides and proteins. How to use it? Every reader will have their own particular interests and will surely be drawn toward the chapters that cover these interests. Within the remaining chapters, however, techniques are described with analytical possibilities that such a reader can then only guess at. So, read the book fully. Again, as is customary in the Methods in Molecular Biology series, the chapter format (Introduction, Materials, Methods, and Notes) allows the authors to introduce the techniques, to explain their relevance and applicability, and, above all, to provide detail-detail that represents each author's accumulated experience and enables the reader to use and benefit from these methods. So, read the book fully, and read it diligently. Warnings and disclaimers: Mass spectrometry today offers the pro tein chemist ready access to a wealth of information that is otherwise avail able only with great difficulty, or perhaps not at all. With this goal in sight, any warnings and disclaimers will almost surely be ignored. So, a warning anyway; the use of mass spectrometry might be habit forming."
1. Gives an in-depth account of the extraordinary optical property at the nanoscale and its use in sensing. 2. Useful for academia, researchers and engineers working in water treatment and purification. 3. Provides sensing application of thematic nanomaterials like quantum dots and core-shell.
-On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing By C. D. Han -Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers By J. K. Kim, C. D. Han -New Class Materials of Organic Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Microand Nano-Structure Toward Photonics By H. Oikawa, T. Onodera, A. Masuhara, H. Kasai, H. Nakanishi -Poly(substituted Methylene) Synthesis: Construction of C C Main Chain from One Carbon Unit By E. Ihara"
The book provides a unique collection of 15 contributions by 15 internationally recognized scientists performing intensive research activity on the preparation and characterization of complex and multiphase materials based on macromolecules as well as on the evaluation and simulation of structure/properties relations. The topic is assuming a general increasing importance as providing a highly sustainable and modern approach to the present and future development of the important area of materials science and technology. The scientific route along the successive contributions goes from the controlled preparation of functional MM both by innovative polymerization reactions and preformed polymers modification (intramacromolecular complexity), to their combination with other MMs and materials to give blends and composites where new properties are conveniently achieved by morphologic complexity. The synergic behaviour of the different components in these last is obtained by reactive processing producing the necessary interfacial adhesion. Even if most examples deal with man-made MMs, biopolymers are also included. The various chapters provide in most cases an exhaustive fundamental description assisted by an up- to-date and broad list of relevant references The book is therefore an excellent informative and formative instrument for those involved in complex materials preparation and application in research and industry.
Analytical ultracentrifugation (AUC) is a powerful method for the characterization of polymers, biopolymers, polyelectrolytes, nanoparticles, dispersions, and other colloidal systems. The method is able to determine the molar mass, the particle size, the particle density and interaction parameters like virial coefficients and association constants. Because AUC is also a fractionation method, the determination of the molar mass distribution, the particle size distribution, and the particle density distribution is possible. A special technique, the density gradient method, allows fractionating heterogeneous samples according to their chemical nature that means being able to detect chemical heterogeneity. The book is divided into chapters concerning instrumentation, sedimentation velocity runs, density gradient runs, application examples and future developments. In particular, the detailed application chapter demonstrates the versatility and power of AUC by means of many interesting and important industrial examples. Thus the book concentrates on practical aspects rather than details of centrifugation theory. Both authors have many years of experience in an industrial AUC research laboratory of a world leading chemical company.
The term biotechnology has emerged on the contemporary scene fairly recently, but the basic concept of utilizing natural materials, either directly or in modified versions, dates back to antiquity. If we search the ancient literature, such as the Bible, we find hundreds of examples wherein people employed, or modified, natural materials for a variety of important uses. As far back as the days of Noah we find pitch, a natural material, being used as a caulk. Clothing was made from animal skins and the products of several plants. Today, we would consider these things as important biotechnological developments. Likewise, the human use of polymeric materials also has a long his tory. In fact, many of the original materials used by mankind were poly mers derived from nature, such as wood, flax, cotton, wool and animal skins, which were used for shelter and clothing. In recent years, however, the concept of biotechnology has taken on a new and renewed role in our society. This is due to a combination of factors, including an increased interest in environmental concerns and the desire to break free from the stranglehold that petrochemicals have placed on our society. If we can manufacture some of our polymers from renewable resources, then we can expect to prepare them for many more years into the future than we might if we could only depend on the petro chemical resources.
Featuring practical strategies and exciting experiments, Teaching Innovations in Lipid Science addresses lipid education at a range of levels from the novice to the graduate student and teacher. Peer-reviewed contributions from internationally known specialists, describe several methods and approaches designed to create new lipid courses, modify existing courses, and serve as a basis for pursuing novel avenues of instruction. Divided into two sections, the first focuses on teaching strategies and outlines some of the barriers that lipid science specialists face when transmitting accurate information. It emphasizes the development and implementation of creative programs that foster interest in lipid science, and presents novel problem-solving approaches. It discusses strategies for involving and evaluating independent study students and explains the successful use of sample cards to teach oilseed and cereal processing. This section also provides generalized accounts of biotechnology and crop improvement and isoprenoid biochemistry, including improvement of oilseed crops and tips on explaining DNA science and crop biotechnology. The second section begins with simple demonstrations on the physical properties of lipids suitable for middle- and high school students. It follows with more complex experiments on analyzing lipids in food oils, plasma, and milk utilizing thin layer chromatography, gas chromatography, and high performance liquid chromatography. Contributions include information on convenient enzyme test kits with exercises that can translate to a lab course beginning with chromatographic methods for lipid analysis. The final chapter presents theory and experiments for studying lipid metabolism in the plastid by describing preparation methods, studying metabolite uptake, and pathway analysis.
This book presents a comprehensive study on a new class of branched polymers, known as hyperbranched polymers (HBPs). It discusses in detail the synthesis strategies for these particular classes of polymers as well as biocompatible and biodegradable HBPs, which are of increasing interest to polymer technologists due to their immense potential in biomedical applications. The book also describes the one-pot synthesis technique for HBPs, which is feasible for large-scale production, as well as HBPs' structure-property relationship, which makes them superior to their linear counterparts. The alterable functional groups present at the terminal ends of the branches make HBPs promising candidates in the biomedical domain, and the book specifically elaborates on the suitable characteristic properties of each of the potential biological HBPs' applications. As such, the book offers a valuable reference guide for all scientists and technologists who are interested in using these newly developed techniques to achieve faster and better treatments.
This book presents a comprehensive survey about the most recent developments in industrial applications, processing techniques and modifications of polymers from marine sources. It systematically introduces the reader to the biomaterials Chitin, Collagen, Alginates, Cellulose and Polyesters and links their interwoven industrial significance and environmental implications. The book elucidates the impact of industrial sourcing of the aquatic system for organic and inorganic matter on the environment and deepens the understanding of the industrial and economic significance of aquatic biopolymers. Further it addresses the question of how to balance the conservation of aquatic life and the industrial and economic interest in developing biodegradable alternatives for plastic. Thus the book will appeal to scientists in the field of chemistry, materials and polymer science as well as engineering.
This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles.
This book addresses a broad range of issues concerning microplastic pollution, including microplastic pollution in various environments (freshwater, marine, air and soil); the sources, fate and effects of microplastics; detection systems for microplastic pollution monitoring; green approaches for the synthesis of environmentally friendly polymers; recovery and recycling of marine plastics; wastewater treatment plants as a microplastic entrance route; nanoplastics as emerging pollutants; degradation of plastics in the marine environment; impacts of microplastics on marine life; microplastics: from marine pollution to the human food chain; mitigation of microplastic impacts and innovative solutions; sampling, extraction, purification and identification approaches for microplastics; adsorption and transport of pollutants on and in microplastics; and lastly, the socio-economic and environmental impacts: assessment and risk analysis. In addition to presenting cutting-edge information and highlighting current trends and issues, the book proposes concrete solutions to help face this significant environmental threat. It is chiefly intended for researchers and industry decision-makers; international, national and local institutions; and NGOs, providing them with comprehensive information on the origin of the problem; its effects on marine environments, with a particular focus on the Mediterranean Sea and coasts; and recent and ongoing research activities and projects aimed at finding technical solutions to mitigate the phenomenon.
Hansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. To update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includesskin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe "designer" solvents, protective clothing, drug delivery systems, and petroleum applications. Presenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.
This book describes current advances in the research on membranes and applications in industry, groundwater, and desalination processes. Topics range from synthesis of new polymers to preparation of membranes using new water treatments for effluents, graphite membranes, development of polymeric and ceramic materials for production of membranes intended to separate gases and liquids, and liquid-liquid phases. The authors include materials used to produce catalytic membranes for polymer synthesis. The book also details theoretical approaches and simulation of membrane processes and parameters and design.
This book delivers a comprehensive overview of the characteristics of several types of materials that are widely used in the current era of supercapacitors; namely, architectured carbon materials, transition metal oxides and conducting polymers. It provides readers with a complete introduction to the fundamentals of supercapacitors, including the development of new electrolytes and electrodes, while highlighting the advantages, challenges, applications and future of these materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
This first comprehensive handbook on this exciting field provides readers with a clear understanding of the current state of the art, ingenious solutions and opportunities. Researchers from academia and industry present such emerging topics as multi-component systems and computational chemistry, as well as the latest developments in competing and complementary technologies. The result is a well-balanced and up-to-date overview.
Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.
Beads made from Egyptian faience have been excavated from grave deposits (c. 4000-3100 BC), together with beads of glazed steatite (a soft rock) and of se- precious stones such as turquoise, carnelian, quartz, and lapis lazuli. Information on these and many more ancient beads used for ornaments and jewelry, ritual ceremonies, as art artifacts and gifts for amorous women throughout history, and descriptions of the raw materials (e. g. , glass, bone, precious and other stones) and manufacturing technologies used for their production can be located in many references. Many books are devoted to the description of beads that are not of water-soluble polymer origin, techniques for their production, their art, value, and distribution, re?ecting the wealth of information existing in this ?eld of science and art. On the other hand, there are no books fully devoted to the fascinating topic of hydrocolloid (polymeric) beads and their unique applications. A few books c- tain scattered chapters and details on such topics, while emphasizing the possibility of locating fragments of information elsewhere; however, again, there is no book that is solely devoted to hydrocolloid beads and their versatile applications. In the meantime, the use of water-soluble hydrocolloid beads is on the rise in many ?elds, making a book that covers both past and novel applications of such beads, as well as their properties and ways in which to manipulate them, crucial.
Silicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products and high technology applications. Among them, silicones are certainly the most wella "known, however there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact some are already available like polysilsesquioxanes and polysilanes. All these silicon based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings a ] all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
MOLECULAR WEIGHr CHANGES AND NE1WORK FORMATION BY SCISSION AND CROSSUNKING A. Charlesby 1 Introduction Main Chain Scission of Polymers ____________________________ _ ________________________ _ 1 Crosslinking ______ . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . _ . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . __ . . . . _ . . . . . . . . . . . _ . . . . . . . . ___ . . _. __ . . . . _. _. _____ . _____ . _ 4 5 Random Crosslinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enhanced Crosslinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Other Forms of Crosslinking . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . _. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Combined Crosslinking and Scission ___________ _________________ ______ _ ______________ . _. _. 11 Antioxidants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . __ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . __ . . . 12 Crosslinking of Polymers in Solution ________________________________ . . ______________ . . . . __ 12 References _. __ _ 13 HIGH ENERGY RADIATION-AND UV UGHr-INDUCED CROSSLINKING AND CHAIN SCISSION w. Schnabel Introduction 15 Importance of Radiation-Induced Crosslinking and Main-Chain Scission in Linear Polymers ___________________________ _________________ 15 TYPes of Radiation and Radiation Sources _. ___________________________ . . . . . . . . . _ . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . _. _. _ . . __ . . . 16 Absorption of Radiation . . _ . . . . _ . . . . . . _ . . _ . . __ . _ . . . . . . . . ____ . . . _ . . . . . . . . . . . . __ . . . . _ . . . . . . . . . _ . . . . _ . . . . . . _ . . . _ . . _ . . . . . . . . . . . . . . . . . . . . . _ . . . . . __ . . . . . . . . . . . _ . . . . . _____ . . . . . . . . . ___ . . . 16 General Aspects Concerning XL and CS in Linear Polymers ______________________ . _________ . _____ . _____ 22 Random and Specific Site Attacks . . . . . . . _. ____ . _ . . . _ . . . . . . . . . . __ . . . . . . . . . . . . . _ . . ___ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . _ . . . . . __ . . . . _ . . . . . . _ . . . . __ . ___ . . . . . . . . . . __ . . _ 22 Detection of XL and CS . . . _. _ . . . . . . . . . . . . . . . _. __ . . . _ . . . . . . . . . . . . ___ . . . . . . . __ . . . _ . . . _ . . . . . . . . ____ . . . . . . . . . . . . . . . . . . _ . . . . _ . . . . . _ . . . . . . . . . . . . . . . . . . . . __ . . . . . _ . . . . _ . . . . . _. _ . . . . _ . . . . . . . 22 Simultaneous XL and CS Mechanisms 25 Ion Beam-Induced Radiation Effects In Linear Polymers ____________________________________________________ .
The free-radical retrograde-precipitation polymerization (FRRPP) process was introduced by the author in the early 1990s as a chain polymerization method, whereby phase separation is occurring while reactive sites are above the lower cr- ical solution temperature (LCST). It was evident that certain regions of the product polymer attain temperatures above the average ?uid temperature, sometimes rea- ing carbonization temperatures. During the early stages of polymerization-induced phase separation, nanoscale polymer domains were also found to be persistent in the reacting system, in apparent contradiction with results of microstructural coarsening from constant-temperature modeling and experimental studies. This mass con?- ment behavior was used for micropatterning, for entrapment of reactive radical sites, and for the formation of block copolymers that can be used as intermediates, surf- tants, coatings, coupling agents, foams, and hydrogels. FRRPP-based materials and its mechanism have also been proposed to be relevant in energy and environmentally responsible applications. This technology lacks intellectual appeal compared to others that have been p- posed to produce polymers of exotic architectures. There are no special chemical mediators needed. Control of conditions and product distribution is done by p- cess means, based on a robust and ?exible free-radical-based chemistry. Thus, it can readily be implemented in the laboratory and in production scale.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Synthetic Polymers is a comprehensive introduction to the technologies involved in the synthesis of the main classes of engineering high polymers used in such materials as plastics, fibers, rubbers, foams, adhesives and coatings. Besides the basic processes, this volume includes information on physical, chemical and mechanical characteristics - key factors with respect to obtaining the right end products. It also focuses on the main application of synthetic polymers in different engineering areas and gives data on production and consumption. Over 60 technological flowcharts are presented in a clear and concise manner, to provide the reader with essential information on relevant operations. |
You may like...
Applications of Modified Starches
Emmanuel Flores Huicochea, Rodolfo Rendon Villalobos
Hardcover
Controlled/Living Radical Polymerization
Krzysztof Matyjaszewski
Hardcover
R2,958
Discovery Miles 29 580
Polymer-Inorganic Nanostructured…
Kostyantyn M. Sukhyy, Elena A. Belyanovskaya
Hardcover
R6,737
Discovery Miles 67 370
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
Materials, Chemicals and Energy from…
Dimitris S. Argyropoulos
Hardcover
R6,974
Discovery Miles 69 740
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,420
Discovery Miles 54 200
Epoxy-Based Composites
Samson Jerold Samuel Chelladurai, Ramesh Arthanari, …
Hardcover
Cellulose Solvents: For Analysis…
Tim Liebert, Thomas Heinze, …
Hardcover
R6,685
Discovery Miles 66 850
|