Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This book is focused on recent progress in the dynamically developing field of controlled/living radical polymerization. It is a sequel to ACS Symposium Series 685, 768, 854, and 944. The volume contains 24 chapters on other controlled/living radical polymerization techniques including kinetics and mechanism of RAFT, DT, NMP, and OMRP, macromolecular architecture by RAFT, DT, and NMP, materials prepared by RAFT and NMP, and industriral aspects of RAFT and NMP.
This book is focused on recent progress in the dynamically developing field of controlled/living radical polymerization. It is a sequel to ACS Symposium Series 685, 768, 854, and 944. Volume 1023 contains 26 chapters on mechanistic, synthetic and materials aspects of ATRP. Volume 1024 contains 24 chapters on other controlled/living radical polymerization techniques.
This volume consists of written chapters taken from the
presentations at the symposium "100+ Years of Plastics: Leo
Baekeland and Beyond," held March 22, 2010, at the 239th ACS
National Meeting in San Francisco. The symposium celebrates the
100th anniversary of the formation of General Bakelite Corp., which
was preceded by Leo Baekland's synthesis of Bakelite in 1907 and
the unveiling of the Bakelite process in 1909. It is quite
reasonable to use the synthesis of Bakelite as the starting point
of the Age of Plastics. Indeed, Time magazine in its June 14, 1999,
issue on the 100 most influential people of the 20th century chose
Leo Baekeland and his Bakelite synthesis as the sole representative
of chemistry.
This ACS Symposium Series is the product of a symposium held at the 241st National Meeting of the American Chemical Society in Anaheim, CA on March 27-31, 2011. It includes chapters on new biobased building blocks such as the furandicarboxylic acid, polyesters and polyamides from adipic, succinic and sebacic acids with aliphatic diols such as 1,3-propylene glycol, 1,4-butanediol, 1,12-dodecylenediol and isosorbide. The conversion of hydroxymethylfurfural, the dehydration product of hexose sugars, to succinic acid and 1,4-butanediol to produce poly(butylene succinate) is described in one chapter. Also the synthesis of new polymers from plant-derived olefinic monomers such as tulipalin A and studies of composites from cotton by-products are featured in other chapters. There is a strong emphasis on biocatalytic synthesis and polymerization within the book. Chapter topics include the synthesis of ?-hydroxyfatty acids and polymers therefrom, an interesting discussion on the structural differences of the products of the biocatalytic and chemical catalytic synthesis of polyesters from oleic diacid and glycerol and the ability to produce polylactic acid (PLA) and PLA-PHA copolyesters within a "microbial cell factory". Other areas of interest explored in other chapters include recent developments of biobased polymer fibers and oleate-based pressure sensitive adhesives and composites. One chapter describes a large increase in cold-drawn fiber tensile strength by the blending of a small amount of ultrahigh molecular weight (MW) poly(3-hydroxybutyrate) with a much lower MW 3-hydroxybutyrate polymer. The addition of a rubber and inorganic fillers to normally brittle PLA was found to dramatically improve its ductility. Finally, there are several chapters on seed oil-based polyurethanes, one on fibers from soy proteins and composites from starch.
This book will explore our forests as the most readily available and renewable source of carbon as well as the building block of chemicals, plastics, and pharmaceuticals as the next 100 years gradually push consumers toward alternate sources of chemicals. Meeting these needs from trees requires that new chemistry be developed so that plant materials is converted to commodity chemicals. This focused discussion on ongoing global efforts at creativity using forest and biomass based renewable materials will include six different mechanisms for bringing about change on this very innovative topic.
The world-wide sales of polysiloxanes or silicones at the beginning of this new millennium is approximately $10 billion per year. Commercial products range from those entirely composed of silicone to products where the silicone is a low level but key component. This symposium covered the recent academic and technological developments behind silicones and silicone-modified materials and the sessions were well attended of wide interest to both the academic and industrial communities. The papers from our two highly successful symposia in this important area were published in the books Silicones and Silicone-Modified Materials, (Eds. S. J. Clarson, J. J. Fitzgerald, M. J. Owen and S. D. Smith), ACS Symposium Series Vol. 729 / Oxford University Press, 2000, ISBN 0-8412-3613-5 and Synthesis and Properties of Silicones and Silicone-Modified Materials, (Eds. S. J. Clarson, J. J. Fitzgerald, M. J. Owen, S. D. Smith and M. E. Van Dyke), ACS Symposium Series Vol 838 / Oxford University Press, 2003, ISBN 0-8412-3804-9
Polymeric materials have been and continue to be a focus of
research in the development of materials for energy conversion,
storage and delivery applications (fuel cells, batteries,
photovoltaics, capacitors, etc.). Significant growth in this field
started in the early 1990s and has continued to grow quite
substantially since that time. Polymeric materials now have a
prominent place in energy research.
The book gives an overview of the current state-of-the-art
concerning the activation and dissolution of cellulose in a broad
variety of solvents. Research on this topic can lead to new
pathways for the utilization of the most abundant terrestrial
biomolecule and may therefore be the basis for new green strategies
towards advanced materials. Leading scientists in the field show
different conceptions for the solubilization of cellulose. The long
history and groundbreaking developments in the field of polymer
chemistry, which are related to this subject, have lead to timely
alternatives to already established methods. In addition to
discussing attempts for the optimization of known dissolving
procedures, this book also details new solvent systems. New
solvents include inorganic and organic salt melts (ionic liquids),
new aqueous media, multi-component organic solvents and the
dissolution under partial derivatization of the polysaccharide. The
opportunities and the limitations of the solvents are demonstrated,
with a particular emphasis on the stability of the solutions and a
possible recycling of the solvent components.
Polymeric materials play an essential and ubiquitous role in many fields including structural and packaging materials, drug development, tissue engineering, wastewater treatment, pollutant removal, separation, water purification, smart agriculture, and even road and building construction. This book contains eleven comprehensive chapters covering topics from deriving polymers from natural resources or wastes to developing novel functional polymeric materials in the form of membranes, hydrogels, foams, nanocomposites for various environmental applications. This book also discusses the utilization of waste plastics and the challenges and progress made in recycling and reusing commercially viable polymers. Such information is valuable and accelerates technological progress. Each chapter further gives the current fabrication methodology, challenges, and future scope of these materials related to their environmental applications. Thus anyone working on polymer-based materials will benefit from the comprehensive knowledge presented in this book on novel polymeric materials and their various environmental applications.
This book is the first volume in a two-volume compilation on
controlled/living radical polymerization. It combines all important
aspects of controlled radical polymerization: from synthetic
procedures, to rational selection of reaction components, to
understanding of the reaction mechanisms, to materials and
applications.
This book highlights current advanced developments in bioepoxy and bioepoxy/clay nanocomposites and an optimisation of material formulation and processing parameters on fabrication of bioepoxy/clay nanocomposites in order to achieve the highest mechanical properties in relation to their morphological structures, thermal properties, as well as biodegradability and water absorption, which is based on the use of Taguchi design of experiments with the consideration of technical and economical point of view. It also elaborates holistic theoretical modelling of tensile properties of such bionanocomposites with respect to the effect of contents of nanoclay fillers and epoxydised soybean oil (ESO).
A well-rounded and articulate examination of polymer properties at the molecular level, Polymer Chemistry focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. It emphasizes the logical progression of concepts and provide mathematical tools as needed as well as fully derived problems for advanced calculations. The much-anticipated Third Edition expands and reorganizes material to better develop polymer chemistry concepts and update the remaining chapters. New examples and problems are also featured throughout. This revised edition: Integrates concepts from physics, biology, materials science, chemical engineering, and statistics as needed. Contains mathematical tools and step-by-step derivations for example problems Incorporates new theories and experiments using the latest tools and instrumentation and topics that appear prominently in current polymer science journals. The number of homework problems has been greatly increased, to over 350 in all. The worked examples and figures have been augmented. More examples of relevant synthetic chemistry have been introduced into Chapter 2 ("Step-Growth Polymers"). More details about atom-transfer radical polymerization and reversible addition/fragmentation chain-transfer polymerization have been added to Chapter 4 ("Controlled Polymerization"). Chapter 7 (renamed "Thermodynamics of Polymer Mixtures") now features a separate section on thermodynamics of polymer blends. Chapter 8 (still called "Light Scattering by Polymer Solutions") has been supplemented with an extensive introduction to small-angle neutron scattering. Polymer Chemistry, Third Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, polymer science, and chemical engineering.
Global trends suggest that 21st-century science and technology will be nanoscale, as traditional technologies have exhausted the potential for miniaturizing individual elements, prompting the search for alternative pathways. Nanophase materials science differs from the traditional one not only by the creation of fundamentally new materials, but also by processes that take place at the atomic and molecular levels, monolayers, and nano volumes. Polymer-Inorganic Nanostructured Composites Based on Amorphous Silica, Layered Silicates, and Polyionenes is devoted to the development of physical and chemical principles of technology for polymer-inorganic nanostructured composites based on amorphous silica, layered silicates, and polyionenes to use the creation of composites for technical purposes. Covering topics such as fractal structure, phosphoric-organic compounds, and proton conductance, this premier reference source is an essential resource for chemists, engineers, students, and educators of higher education, researchers, and academicians.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics. |
You may like...
Crosslinkable Polyethylene Based Blends…
Jince Thomas, Sabu Thomas, …
Hardcover
R4,288
Discovery Miles 42 880
Applied Polymer Science
Ulf W. Gedde, Mikael S. Hedenqvist, …
Hardcover
R3,676
Discovery Miles 36 760
Advances in Hybrid Conducting Polymer…
Syed Shahabuddin, Adarsh Kumar Pandey, …
Hardcover
R4,916
Discovery Miles 49 160
Crystallization as Studied by Broadband…
Tiberio A. Ezquerra, Aurora Nogales
Hardcover
R2,821
Discovery Miles 28 210
Electroactive Polymers - Synthesis and…
Murali Srinivasan Natamai Subramanian
Hardcover
R4,406
Discovery Miles 44 060
Graphene Based Biopolymer Nanocomposites
Bhasha Sharma, Purnima Jain
Hardcover
R4,509
Discovery Miles 45 090
NAC 2019 - Proceedings of the 2nd…
Ri-Ichi Murakami, Pankaj M. Koinkar, …
Hardcover
R2,789
Discovery Miles 27 890
Reinforcement of Rubber - Visualization…
Shinzo Kohjiya, Atsushi Kato, …
Hardcover
R2,792
Discovery Miles 27 920
Eco-friendly and Smart Polymer Systems
Hamid Mirzadeh, Ali Asghar Katbab
Hardcover
R5,596
Discovery Miles 55 960
|