![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This is the second edition of "Melt Rheology and its Role in Plastics Processing," although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
The series "Advances in Dendritic Macromolecules" aims to cover the
synthesis and supramolecular chemistry of dendritic or cascade
super-molecules as well as their less perfect hyperbranched
cousins.
This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed to bring together in a single volume the most important and active fields of hydrogen bonding strategy for designing supramolecular materials. The book will be a valuable resource for graduates and researchers working in the fields of supramolecular chemistry and materials sciences. Zhan-Ting Li, PhD, is a Professor of Organic Chemistry at the Department of Chemistry, Fudan University, China Li-Zhu Wu, PhD, is a Professor of Organic Chemistry at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China
Volume 14 of this series presents three interesting reviews of
research on alkaloids. Chapter 1, by Paul L. Schiff, Jr., is a
monumental effort, presenting a selective, comprehensive tabular
review of research on the bisbenzylisoquinoline alkaloids, with an
analysis of the respective alkaloid types. The chapter should serve
as a very useful tool for the bench research scientist who is
involved in the isolation and elucidation of structures of
bisbenzylisoquinoline alkaloids. Moreover, the data in these tables
provides the botanical distribution and occurrence (family, genus,
species) of the various classes of these alkaloids. The alkaloids
are also categorized by their molecular weights and structural
types.
The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.
This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.
This thesis introduces a series of novel, non-conjugated polyarylether hosts that are not subject to the triplet-energy limitations of traditional conjugated polymer hosts. As a result of this major breakthrough, the long-standing problem of triplet energy back transfer has now been overcome, making it possible to design high-efficiency electrophosphorescent polymers (PhPs), especially the blue and all-phosphorescent white ones. In addition, the author proposes a spiro-linked hyperbranched architecture for PhPs to inhibit the undesired triplet energy back transfer process in low triplet-energy hosts. The work in this thesis provides vital new insights into the design of PhPs and has led to several publications in high-profile journals.
Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II: State-of-the-art and Perspectives provides a critical review of the state-of-the-art developments in industrially relevant processes connected to efficient and selective olefin upgrading. Specific attention is devoted to catalysts containing imine- and amine-based ligands. All the chapters in this book have been designed to provide a systematic account of the vast amount of information available for this type of catalyst as well as to highlight the factors that ultimately control the catalyst's performance and productivity. A comprehensive panorama of catalyst precursors is presented, spanning from group 10 -diimine complexes and iron and cobalt 2,6-bis(imino)pyridine derivatives, to vanadium, chromium, titanium, zirconium and lanthanide complexes supported by nitrogen-containing ligands. The authors of this collective work are currently involved in the development of imine-based catalysts for efficient and selective olefin upgrading and the majority of them have dedicated most of their scientific career to this important field. In writing this book, their major goal is to transfer as many ideas and experiences as possible to the global audience of scientists engaged in this area of research."
This book introduces recent progress in stimuli-responsive interfaces constructed on colloidal materials such as micelles and vesicles and on solid material surfaces. There is discussion of the effect of stimuli such as light, heat, pH, and electric field on changes in the morphology of the molecules at the interfaces and that of colloidal materials. The changes in the properties, such as gelation ability, dispersibility, and emulsification ability, of the resultant bulk materials containing these colloidal materials or those of the solid material are also covered. In addition, design criteria for high sensitivity, quick responsiveness, and high reversibility are presented. In each author's original system, the correlations between molecular-level responses and bulk functional responses are described as well. This book serves as an excellent guide to designing and fabricating novel, functional, eco-friendly stimuli-responsive interfaces and related materials.
The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.
This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The content includes industrial applications and will fill the gap between the research works in laboratory to practical applications in related industries.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience."
This book provides an introductory and general overview of advances in polymers towards their employment as antimicrobial materials. The author describes current approaches for avoiding microbial contamination, toward macro-molecular antibiotics, and prevention of antibiotic-resistant bacteria by use of polymers. He establishes the remaining issues and analyzes existing methodologies for treating bacterial infections and for preparing antimicrobial materials.
Since their first industrial use polymers have gained a tremendous success. The two volumes of "Polymers - Opportunities and Risks" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 "Polymers - Opportunities and Risks I: General and Environmental Aspects" is dedicated to the basics of the engineering of polymers - always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 "Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists, but also for environmental managers and decision makers.
In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymers samples. This book incorporates recent technological advances in
analytical pyrolysis methods especially useful for the
characterization of 163 typical synthetic polymers. The book
briefly reviews the instrumentation available in advanced
analytical pyrolysis, and offers guidance to perform effectually
this technique combining with gas chromatography and mass
spectrometry. Main contents are comprehensive sample pyrograms,
thermograms, identification tables, and representative mass spectra
(MS) of pyrolyzates for synthetic polymers. This edition also
highlights thermally-assisted hydrolysis and methylation technique
effectively applied to 33 basic condensation polymers. Coverage of Py-GC/MS data of conventional pyrograms and thermograms of basic 163 kinds of synthetic polymers together with MS and retention index data for pyrolyzates, enabling a quick identification Additional coverage of the pyrograms and their related data for 33 basic condensation polymers obtained by the thermally-assisted hydrolysis and methylation technique All compiled data measured under the same experimental conditions for pyrolysis, gas chromatography and mass spectrometry to facilitate peak identification Surveyable instant information on two facing pages dedicated to the whole data of a given polymer sample .
In this thesis, Bernhard Schmidt describes his research into two fields in the chemical sciences: supramolecular and macromolecular chemistry. Schmidt first investigates cyclodextrins (CDs), which are well knowN for the formation of supramolecular host/guest complexes with hydrophobic molecules in aqueous solution. Schmidt then also examines reversible addition-fragmentation chain transfer (RAFT) polymerization as a well-suited toll for the synthesis of water-soluble end-functionalized polymers. The author skillfully combines both concepts as a powerful tool to access reversibly forming macromolecular architectures. The novel methods and architectures presented in this work are highly interesting from both a fundamental point of view as well as a basis for the design of efficient drug release systems. The work in this thesis has led to a number of publications in top peer-reviewed journals.
Polymer research has been giving greater attention to the importance of the interdependence of applications and the behavior of polymeric materials. The complexities call for a self-contained reference work for students, polymer scientists, industrialists, chemists, and polymer technologists. This book is aimed at answering that call. It presents concepts at the intersections of polymer structure, polymer characterization, and new instrumental methodologies for assessing the characteristics of polymers. Various application requirements are covered, with recommendations for the types of instruments best suited for different testing circumstances. It overviews recent work in instrumental methods along with some of the significant advances in polymer characterization. References to key theoretical papers are provided. Possible trends and future developments in quantitative and qualitative analysis are also discussed. This book will encourage scientists and engineers in the polymers field to consider using the new approaches to testing, which can save time and effort in evaluating polymer samples. Students and professionals alike in the polymer processing industries will find this book to be a valuable resource--even a supplement to standard texts in polymer science and engineering.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
A well-rounded and articulate examination of polymer properties at the molecular level, Polymer Chemistry focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. It emphasizes the logical progression of concepts and provide mathematical tools as needed as well as fully derived problems for advanced calculations. The much-anticipated Third Edition expands and reorganizes material to better develop polymer chemistry concepts and update the remaining chapters. New examples and problems are also featured throughout. This revised edition: Integrates concepts from physics, biology, materials science, chemical engineering, and statistics as needed. Contains mathematical tools and step-by-step derivations for example problems Incorporates new theories and experiments using the latest tools and instrumentation and topics that appear prominently in current polymer science journals. The number of homework problems has been greatly increased, to over 350 in all. The worked examples and figures have been augmented. More examples of relevant synthetic chemistry have been introduced into Chapter 2 ("Step-Growth Polymers"). More details about atom-transfer radical polymerization and reversible addition/fragmentation chain-transfer polymerization have been added to Chapter 4 ("Controlled Polymerization"). Chapter 7 (renamed "Thermodynamics of Polymer Mixtures") now features a separate section on thermodynamics of polymer blends. Chapter 8 (still called "Light Scattering by Polymer Solutions") has been supplemented with an extensive introduction to small-angle neutron scattering. Polymer Chemistry, Third Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, polymer science, and chemical engineering.
Offers new strategies to optimize polymer reactions With contributions from leading macromolecular scientists and engineers, this book provides a practical guide to polymerization monitoring. It enables laboratory researchers to optimize polymer reactions by providing them with a better understanding of the underlying reaction kinetics and mechanisms. Moreover, it opens the door to improved industrial-scale reactions, including enhanced product quality and reduced harmful emissions. Monitoring Polymerization Reactions begins with a review of the basic elements of polymer reactions and their kinetics, including an overview of stimuli-responsive polymers. Next, it explains why certain polymer and reaction characteristics need to be monitored. The book then explores a variety of practical topics, including: * Principles and applications of important polymer characterization tools, such as light scattering, gel permeation chromatography, calorimetry, rheology, and spectroscopy * Automatic continuous online monitoring of polymerization (ACOMP) reactions, a flexible platform that enables characterization tools to be employed simultaneously during reactions in order to obtain a complete record of multiple reaction features * Modeling of polymerization reactions and numerical approaches * Applications that optimize the manufacture of industrially important polymers Throughout the book, the authors provide step-by-step strategies for implementation. In addition, ample use of case studies helps readers understand the benefits of various monitoring strategies and approaches, enabling them to choose the best one to match their needs. As new stimuli-responsive and "intelligent" polymers continue to be developed, the ability to monitor reactions will become increasingly important. With this book as their guide, polymer scientists and engineers can take full advantage of the latest monitoring strategies to optimize reactions in both the lab and the manufacturing plant.
This book presents the principle ideas of combining different analytical techniques in multi-dimensional analysis schemes. It reviews the basic principles and instrumentation of multi- dimensional chromatography and the hyphenation of liquid chromatography with selective spectroscopic detectors and presents experimental protocols for the analysis of complex polymers. It is the consequent continuation of "HPLC of Polymers" from 1999 by the same authors. Like its 'predecessor', this book discusses the theoretical background, equipment, experimental procedures and applications for each separation technique, but in contrast treats multi-dimensional and coupled techniques. "Multidimensional HPLC of Polymers" intends to review the state of the art in polymer chromatography and to summarize the developments in the field during the last 15 years. With its tutorial and laboratory manual style it is written for beginners as well as for experienced chromatographers, and will enable its readers (polymer chemists, physicists and material scientists, as well as students of polymer and analytical sciences) to optimize the experimental conditions for their specific separation problems.
This book is the first comprehensive collection of electronic aspects of different kinds of elastomer composites, including combinations of synthetic, natural and thermoplastic elastomers with different conducting fillers like metal nanoparticles, carbon nanotubes, or graphenes, and many more. It covers elastomer composites, which are useful in electronic applications, including chemical and physical as well as material science aspects. The presented elastomer composites have great potential for solving emerging new material application requirements, for example as flexible and wearable electronics. The book is structured and organized by the rubber/elastomer type: each chapter describes a different elastomer matrix and its composites. While introducing to important fundamentals, it is application-oriented, discussing the current issues and challenges in the field of elastomer composites. This book will thus appeal to researchers and scientists, to engineers and technologists, but also to graduate students, working on elastomer composites, or on electronics engineering with the composites, providing the readers with a sound introduction to the field and solutions to both fundamental and applied problems.
With the aim of providing a deeper insight into possible mechanisms of biological self-organization, this thesis presents new approaches to describe the process of self-assembly and the impact of spatial organization on the function of membrane proteins, from a statistical physics point of view. It focuses on three important scenarios: the assembly of membrane proteins, the collective response of mechanosensitive channels and the function of the twin arginine translocation (Tat) system. Using methods from equilibrium and non-equilibrium statistical mechanics, general conclusions were drawn that demonstrate the importance of the protein-protein interactions. Namely, in the first part a general aggregation dynamics model is formulated, and used to show that fragmentation crucially affects the efficiency of the self-assembly process of proteins. In the second part, by mapping the membrane-mediated forces into a simplified many-body system, the dynamic and equilibrium behaviour of interacting mechanosensitive channels is derived, showing that protein agglomeration strongly impacts its desired function. The final part develops a model that incorporates both the agglomeration and transport function of the Tat system, thereby providing a comprehensive description of this self-organizing process.
Preparation of Liquid Crystalline Elastomers, by F. Brommel, D. Kramer, H. Finkelmann Applications of Liquid Crystalline Elastomers, by C. Ohm, M. Brehmer und R. Zentel Liquid Crystal Elastomers and Light, by Peter Palffy-Muhoray Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, by Kenji Urayama The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers, by Andrija Lebar, George Cordoyiannis, Zdravko Kutnjak und Bostjan Zalar Order and Disorder in Liquid-Crystalline Elastomers, by Wim H. de Jeu und Boris I. Ostrovskii"
'Recent Advances in Elastomeric Nanocomposites' reviews the recent progresses in the synthesis, processing as well as applications of elastomeric nanocomposites. Elastomers are a very important class of polymer materials and the generation of their nanocomposites by the incorporation of nano-filler has led to significant enhancement of their properties and, hence, expansion of their application potential. Most of the studies related with these materials are present in the form of research papers. Here, the authors present a comprehensive text covering the whole of the subject. The book is tailored more from the applications point of view, but also provide enough introductory material for research scholars new to this field. |
You may like...
|