![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale - the goal of this work - is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well - and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.
This book comprehensively summarizes important aspects of research in the active field of lignocellulosic (polymer) composites, including polymer materials from or containing cellulose, hemicellulose and lignin. It describes how these materials can be produced from forest products and natural fibers from sources such as jute, flax, sisal, and many more, and even from agricultural residues (like wheat straw, corn stover, or sugarcane bagasse). In times of high demand for renewable green materials, lignocellulosic materials from organic matter produced by trees, shrubs and agricultural crops present a highly attractive feedstock. The international authors explain different treatment and fabrication methods for the production of lignocellulosic materials. Other chapters address the properties of these green materials or illustrate specific applications, ranging from food packaging and household products to adsorbents and even conductive polymer composites. In this way, this book offers a broad and comprehensive overview over the entire field of lignocellulosic composite materials.
This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.
This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between the fluid modelling to its physical parameters and new matlab programs illustrating the modelling. Particle-based modelling techniques for complex-structure fluids are added together with some sample programs. A solution manual to the problems is included.
This book is the first of two volumes providing comprehensive coverage of the fundamental knowledge and technology of composite materials. It covers a variety of design, fabrication and characterization methods as applied to composite materials, particularly focusing on the fiber-reinforcement mechanism and related examples. It is ideal for graduate students, researchers, and professionals in the fields of Materials Science and Engineering, and Mechanical Engineering.
This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.
This book exclusively focuses on the science and fundamentals of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the core science and fundamentals of both synthetic and natural polymer-based gels, and pays particular attention to applications in the various research fields of biomedicine and engineering. Key topics addressed include: polysaccharide-based gels and their fundamentals; stimuli-responsive polymer gels; polymer gels applied to enzyme and cell immobilization; chitosan-based gels for cancer therapy; natural polymeric and gelling agents; radiation dosimetry; polymeric gels as vehicles for enhanced drug delivery across the skin; transport in and through gel; and polymer gel nanocomposites and functional gels. The book's extensive and highly topical coverage will appeal to researchers working in a broad range of fields in industry and academia alike.
This book includes chapters based on the potential uses of polysaccharides such as fibers in food and non-food applications. The complexity of their synthesis in plants, the highly multidisciplinary character of polysaccharide research, and the wide variety of applications from food to clothing to energy are addressed in this volume. The authors describe in detail how these latter grand challenges are of great importance in research, especially in the midst of enormous overpopulation and economic issues. Therefore, the volume contributes additional information to the chemical, nutritional, medical, and energy roles of these bio-based products, finding applications in diverse fields of their raw and composite forms. This volume is a useful resource for graduate students and contains themes for instructors and senior research leaders. Written by internationally renowned experts, it is aimed at workers in polymer laboratories, classrooms, and policy makers.
Successful characterization of polymer systems is one of the most
important objectives of today's experimental research of polymers.
Considering the tremendous scientific, technological, and economic
importance of polymeric materials, not only for today's
applications but for the industry of the 21st century, it is
impossible to overestimate the usefulness of experimental
techniques in this field. Since the chemical, pharmaceutical,
medical, and agricultural industries, as well as many others,
depend on this progress to an enormous degree, it is critical to be
as efficient, precise, and cost-effective in our empirical
understanding of the performance of polymer systems as possible.
This presupposes our proficiency with, and understanding of, the
most widely used experimental methods and techniques. * Addresses the most important practical techniques for
experimental research in the growing field of polymer science
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume Three considers advanced polymeric materials such as electroactive polymers, multi-responsive polymers, shape memory polymers, stimuli responsive polymers, and active and intelligent polymers as topics for analysis. World renowned researchers from Argentina, Austria, China, Egypt, France, India, Iran, Japan, Pakistan, Romania and Spain have participated in this book. With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
This book presents a comprehensive overview on origin, structure, properties, modification strategies and applications of the biopolymer lignin. It is organized into four themed parts. The first part focuses on the analysis and characterization of the second most abundant biopolymer. The following part is devoted to the biological aspects of lignin such as biosynthesis and degradation. In the third part, chemical modification strategies and the preparation of composites as well as nano- and microparticles are discussed.The final part addresses the industrial application of lignin and its derivatives, as well as lignin materials. The usage for synthesis of biofuels, fine chemicals and in agriculture and food industry is covered. This book is a comprehensive source for researchers, scientists and engineers working in the field of biopolymers as well as renewable materials and sources.
This book covers the performance aspects of nanocomposite supercapacitor materials based on transition metal oxides, activated carbon, carbon nanotubes, carbon nanofibers, graphene and conducting polymers. It compares the performance of simple electrode materials versus binary and ternary composites, while highlighting the advantages and challenges of different supercapacitor electrode materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
This book addresses a range of synthesis and characterization techniques that are critical for tailoring and broadening the various aspects of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the science and fundamentals of both synthetic and natural polymer-based gels. Topics covered include: synthesis and structure of physically/chemically cross-linked polymer-gels/polymeric nanogels; gel formation through non-covalent cross-linking; molecular design and characterization; polysaccharide-based polymer gels: synthesis, characterization, and properties; modified polysaccharide gels: silica-based polymeric gels as platforms for the delivery of pharmaceuticals; gel-based approaches in genomic and proteomic sciences; emulgels in drug delivery; and organogels. The book provides a cutting-edge resource for researchers and scientists working in various fields involving polymers, biomaterials, bio-nanotechnology and functional materials.
This book is an overview of ESIS Technical Committee 4's activities
since the mid-1980s. A wide range of tests is described and the
numerous authors is a reflection of the wide and enthusiastic
support we have had.
Volume 11 of this series presents five timely reviews on current
research on alkaloids. Chapter 1 by Paul L. Schiff, Jr. is a
monumental survey of research that has been carried out over the
past decade on the "Thalictrum" alkaloids. Forty-six new alkaloids
are described from fifteen species of the genus "Thalictrum," as
well as 116 alkaloids of known structure from thirty-six species
and subspecies of the genus. The chapter includes discussions of
isolation and structure elucidation, analysis, biosynthesis, cell
culture, and pharmacology. Also featured are inclusive compilations
of botanical sources, alkaloids by alkaloid types, and calculated
molecular weights of the "Thalictrum" alkaloids. Chapter 2 by Giovanni Appendino provides a fascinating treatment
of Taxine, a collective name referring to a mixture of diterpenoid
alkaloids from the yew tree (genus: "Taxus"). Taxine is responsible
for the toxic properties of the yew tree that has been documented
in historical and fictional literature, from Julius Caesar to
Shakespeare, and from Agatha Christie to T.S. Eliot. The chapter
treats the history, isolation techniques, structure elucidation,
chemistry, and pharmacology of Taxine. Chapter 3 by Mary D. Menachery surveys the alkaloids of South
American Menispermaceae (moonseed family). Many different
structural types are included in this family. The alkaloid-bearing
plants are woody-vines, shrubs, or small trees. Several of these
species possess potent curare activity. The chemistry as well as
pharmacology of these alkaloids is summarized. Chapter 4 by Russell J. Molyneux, Robert J. Nash, and Naoki
Asano treats the chemistry and biological activity of the
calystegines and related "nor"tropane alkaloids. These
polyhydroxylated bicyclic alkaloids represent another class of
compounds that inhibit glycosidases, producing profound effects in
biological systems by disrupting the essential cellular function of
glycoprotein processing. Chapter 5, a related chapter by Robert J. Nash, Naoki Asano, and Alison A. Watson, reviews polyhydroxylated alkaloids that inhibit glycosidases. Topics covered include distribution, ecological significance and toxicity, isolation, synthesis, and biosynthesis.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This volume covers experimental and theoretical advances on the relationship between composition, structure and macroscopic mechanical properties of novel hydrogels containing dynamic bonds. The chapters of this volume focus on the control of the mechanical properties of several recently discovered gels with the design of monomer composition, chain architecture, type of crosslinking or internal structure. The gels discussed in the different chapters have in common the capability to dissipate energy upon deformation, a desired property for mechanical toughness, while retaining the ability to recover the properties of the virgin material over time or to self-heal when put back in contact after fracture. Some chapters focus on the synthesis and structural aspects while others focus on properties or modelling at the continuum or mesoscopic scale. The volume will be of interest to chemists and material scientists by providing guidelines and general structure-property considerations to synthesize and develop innovative gels tuned for applications. In addition it will provide physicists with a better understanding of the role of weak interactions between molecules and physical crosslinking on macroscopic dissipative properties and self-healing or self-recovering properties.
This book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields. An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes. * Connects innovative material performance to the flexibility of multimodal polymer design processes; * Provides a comprehensive description of the polymerization process from the atomic level to the macroscale; * Presents a polyhedric view of multimodal polymer production, including structure, property, and processing relationships, and the development of new materials.
Processing of polymer nanocomposites usually requires special attention since the resultant structure-micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration. Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites. This book introduces readers to nanomaterials and polymer nanocomposites processing. After defining nanoparticles and polymer nanocomposites and discussing environmental aspects, the second chapter focuses on the synthesis and functionalization of nanomaterials with applications in polymers. A brief overview on nanoclay and nanoclay-containing polymer nanocomposites is provided in third chapter. The fourth chapter provides an overview of the polymer nanocomposites structural elucidation techniques, such as X-ray diffraction and scattering, microscopy and spectroscopy, rheology. The fifth chapter is dedicated to the polymer nanocomposites processing technologies, among which electrospinning, which has very exciting applications ranging from medical to filtration. The last chapter provides an overview on how melt-processing strategy impact structure and mechanical properties of polymer nanocomposites by taking polypropylene-clay nanocomposite as a model system. The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists.
Many industrial formulations such as detergents, paints, foodstuff and cosmetics contain both surfactants and polymers and their interaction govern many of the properties. This book is unique in that it discusses the solution chemistry of both surfactants and polymers and also the interactions between the two. The book, which is based on successful courses given by the authors since 1992, is a revised and extended version of the first edition that became a market success with six reprints since 1998. Surfactants and Polymers in Aqueous Solution is broad in scope, providing both theoretical insights and practical help for those active in the area. This book contains a thorough discussion of surfactant types and gives information of main routes of preparation. A chapter on novel surfactants has been included in the new edition. Physicochemical phenomena such as self-assembly in solution, adsorption, gel formation and foaming are discussed in detail. Particular attention is paid to the solution behaviour of surfactants and polymers containing polyoxyethylene chains. Surface active polymers are presented and their interaction with surfactants is a core topic of the book. Protein-surfactant interaction is also important and a new chapter deals with this issue. Microemulsions are treated in depth and several important application such as detergency and their use as media for chemical reactions are presented. Emulsions and the choice of emulsifier is discussed in some detail. The new edition also contains chapters on rheology and wetting. Surfactants and Polymers in Aqueous Solution is aimed at those dealing with surface chemistry research at universities and with surfactant formulation in industry.
This book effectively links the latest scientific advances to current technological applications of polymers, mainly focusing on biodegradable polymers obtained from biomass. The individual chapters were written by academic and industry researchers alike, introducing readers to topics that have received little attention in the literature to date. Key topics covered include polymers used in various areas such as food packaging, pharmaceuticals, energy production and the cosmetics industry, as well as the treatment of aqueous effluents.
This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems. In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research.
This book discusses recent advances in hydrogels, including their generation and applications and presents a compendium of fundamental concepts. It highlights the most important hydrogel materials, including physical hydrogels, chemical hydrogels, and nanohydrogels and explores the development of hydrogel-based novel materials that respond to external stimuli, such as temperature, pressure, pH, light, biochemicals or magnetism, which represent a new class of intelligent materials. With their multiple cooperative functions, hydrogel-based materials exhibit different potential applications ranging from biomedical engineering to water purification systems. This book covers key topics including superabsorbent polymer hydrogel; intelligent hydrogels for drug delivery; hydrogels from catechol-conjugated materials; nanomaterials loaded hydrogel; electrospinning of hydrogels; biopolymers-based hydrogels; injectable hydrogels; interpenetrating-polymer-network hydrogels: radiation- and sonochemical synthesis of micro/nano/macroscopic hydrogels; DNA-based hydrogels; and multifunctional applications of hydrogels. It will prove a valuable resource for researchers working in industry and academia alike.
|
![]() ![]() You may like...
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,687
Discovery Miles 56 870
Reinforcement of Rubber - Visualization…
Shinzo Kohjiya, Atsushi Kato, …
Hardcover
R2,930
Discovery Miles 29 300
Materials, Chemicals and Energy from…
Dimitris S. Argyropoulos
Hardcover
R7,319
Discovery Miles 73 190
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,672
Discovery Miles 56 720
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,646
Discovery Miles 26 460
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,691
Discovery Miles 56 910
|