![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: * One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures * Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification * The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
Une Perspective Historique; Y. Ne'eman. REVIEW PAPERS: Focal Conic Domains in Smectics; P. Boltenhagen, et al. On Polymer Brushes and Blobology; A. Halperin. RESEARCH PAPERS: Polymer Physics: NonDebye Screening in Polyelectrolyte Solutions; K. Kremer, et al. Polymers in a Random Environment and Molecular Quasi-Species; L. Peliti. Crystallography: Twins in Diamond Films; D. Shechtman. Dynamics of Disordered Systems/Glasses: Dynamics of Interface Depinning in a Disordered Medium; S. Stepanow, et al. Percolation, Diffusion, and Fractons: Hull of Percolation Clusters in Three Dimensions; J.M. Debierre. Dynamics of Diffusion and Invasion Fronts; J.F. Gouyet. Surfactants and Liquid Crystals: Vesicles of High Topological Genus; X. Michalet, et al. SCIENCE AND SOCIETY: Neo-Darwinian Processes in the Evolution of Science and of Human Societies; Y. Ne'eman. 19 additional articles. Index.
This book introduces the reader to important aspects of the nano-hydrogels. It covers the development of hydrogels and their biology, chemistry and properties. Focus is also given to innovative characterization techniques and advances in structural design, with special emphasis on molecular structure, dynamic behavior and structural modifications of hydrogels. This book serves as a consolidated reference work for the diverse aspects of hydrogels, creating a valuable resource for students and researchers in academia and industry.
This is the second edition of "Melt Rheology and its Role in Plastics Processing," although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
Photochromism is the reversible phototransformation of a chemical species between two forms having different absorption spectra. During the phototransformation not only the absorption spectra but also various physicochemical properties change, such as the refractive index, dielectric constant, oxidation/reduction potential, and geometrical structure. The property changes can be applied to photonic equipment such as erasable memory media, photo-optical switch components, and display devices. This book compiles the accomplishments of the research project titled "New Frontiers in Photochromism" supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The project focused not only on the above-mentioned classical subjects in photochromism, such as color changes, optical memory, and optical switches, but also on fundamental physicochemical studies and unprecedented application fields that have not yet been explored in photochromism. The latter topics include light-driven mechanical motion, photocontrol of surface wettability, metal deposition on solid materials, photocontrol of chiral properties, ultrafast decoloration dyes, and femtosecond laser experiments, among others.
This book covers nanotechnology based approaches for improving the therapeutic efficacy of natural products. It critically explores lipid nanoarchitectonics, inorganic particles and nanoemulsion based tools for delivering them. With its chapters from eminent experts working in this discipline, it is ideal for researchers and professionals working in the area.
This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed to bring together in a single volume the most important and active fields of hydrogen bonding strategy for designing supramolecular materials. The book will be a valuable resource for graduates and researchers working in the fields of supramolecular chemistry and materials sciences. Zhan-Ting Li, PhD, is a Professor of Organic Chemistry at the Department of Chemistry, Fudan University, China Li-Zhu Wu, PhD, is a Professor of Organic Chemistry at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China
The series "Advances in Dendritic Macromolecules" aims to cover the
synthesis and supramolecular chemistry of dendritic or cascade
super-molecules as well as their less perfect hyperbranched
cousins.
Volume 14 of this series presents three interesting reviews of
research on alkaloids. Chapter 1, by Paul L. Schiff, Jr., is a
monumental effort, presenting a selective, comprehensive tabular
review of research on the bisbenzylisoquinoline alkaloids, with an
analysis of the respective alkaloid types. The chapter should serve
as a very useful tool for the bench research scientist who is
involved in the isolation and elucidation of structures of
bisbenzylisoquinoline alkaloids. Moreover, the data in these tables
provides the botanical distribution and occurrence (family, genus,
species) of the various classes of these alkaloids. The alkaloids
are also categorized by their molecular weights and structural
types.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.
This book offers a valuable reference source to graduate and post graduate students, engineering students, research scholars polymer engineers from industry. The book provides the reader with current developments of theoretical models describing the thermodynamics polyelectrolytes as well as experimental findings. A particular emphasis is put on the rheological description of polyelectrolyte solutions and hydrogels.
The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.
The book gathers the peer-reviewed contributions presented at the 3rd International Conference on Application of Superabsorbent Polymers (SAP) and Other New Admixtures towards Smart Concrete, held in Skukuza, South Africa, on November 25-27, 2019. It features papers focusing on the behavior of SAP in concrete (in particular the absorption behavior) as well as the effect of SAP on fresh and hardened concrete properties. It also covers topics such as other modern admixtures, in particular rheology-modifying admixtures, including the recently emerging field of bio- or waste-derived admixtures. The conference builds on the experience and summarizes the activities of the RILEM Technical Committee 260-RSC "Recommendations for Use of Superabsorbent Polymers in Concrete Construction" and addresses other prominent research activities in the field of concrete admixtures.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience."
This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.
This thesis introduces a series of novel, non-conjugated polyarylether hosts that are not subject to the triplet-energy limitations of traditional conjugated polymer hosts. As a result of this major breakthrough, the long-standing problem of triplet energy back transfer has now been overcome, making it possible to design high-efficiency electrophosphorescent polymers (PhPs), especially the blue and all-phosphorescent white ones. In addition, the author proposes a spiro-linked hyperbranched architecture for PhPs to inhibit the undesired triplet energy back transfer process in low triplet-energy hosts. The work in this thesis provides vital new insights into the design of PhPs and has led to several publications in high-profile journals.
Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II: State-of-the-art and Perspectives provides a critical review of the state-of-the-art developments in industrially relevant processes connected to efficient and selective olefin upgrading. Specific attention is devoted to catalysts containing imine- and amine-based ligands. All the chapters in this book have been designed to provide a systematic account of the vast amount of information available for this type of catalyst as well as to highlight the factors that ultimately control the catalyst's performance and productivity. A comprehensive panorama of catalyst precursors is presented, spanning from group 10 -diimine complexes and iron and cobalt 2,6-bis(imino)pyridine derivatives, to vanadium, chromium, titanium, zirconium and lanthanide complexes supported by nitrogen-containing ligands. The authors of this collective work are currently involved in the development of imine-based catalysts for efficient and selective olefin upgrading and the majority of them have dedicated most of their scientific career to this important field. In writing this book, their major goal is to transfer as many ideas and experiences as possible to the global audience of scientists engaged in this area of research."
This book introduces recent progress in stimuli-responsive interfaces constructed on colloidal materials such as micelles and vesicles and on solid material surfaces. There is discussion of the effect of stimuli such as light, heat, pH, and electric field on changes in the morphology of the molecules at the interfaces and that of colloidal materials. The changes in the properties, such as gelation ability, dispersibility, and emulsification ability, of the resultant bulk materials containing these colloidal materials or those of the solid material are also covered. In addition, design criteria for high sensitivity, quick responsiveness, and high reversibility are presented. In each author's original system, the correlations between molecular-level responses and bulk functional responses are described as well. This book serves as an excellent guide to designing and fabricating novel, functional, eco-friendly stimuli-responsive interfaces and related materials.
This edited book comprises of eight chapters dealing on various aspects of pharmaceutical technology for delivery of natural products. Book chapters deal with the solubility and bioavailability enhancement technologies for natural products. Emphasis has also been given on the significance of delivery strategies for improving the therapeutic efficacy of paclitaxel, galantamine and tea constituents.
This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The content includes industrial applications and will fill the gap between the research works in laboratory to practical applications in related industries.
In this thesis, Bernhard Schmidt describes his research into two fields in the chemical sciences: supramolecular and macromolecular chemistry. Schmidt first investigates cyclodextrins (CDs), which are well knowN for the formation of supramolecular host/guest complexes with hydrophobic molecules in aqueous solution. Schmidt then also examines reversible addition-fragmentation chain transfer (RAFT) polymerization as a well-suited toll for the synthesis of water-soluble end-functionalized polymers. The author skillfully combines both concepts as a powerful tool to access reversibly forming macromolecular architectures. The novel methods and architectures presented in this work are highly interesting from both a fundamental point of view as well as a basis for the design of efficient drug release systems. The work in this thesis has led to a number of publications in top peer-reviewed journals.
Carbohydrate Chemistry provides review coverage of all publications relevant to the chemistry of monosaccharides and oligosaccharides in a given year. The amount of research in this field appearing in the organic chemical literature is increasing because of the enhanced importance of the subject, especially in areas of medicinal chemistry and biology. In no part of the field is this more apparent than in the synthesis of oligosaccharides required by scientists working in glycobiology. Clycomedicinal chemistry and its reliance on carbohydrate synthesis is now very well established, for example, by the preparation of specific carbohydrate- based antigens, especially cancer-specific oligosaccharides and glycoconjugates. Coverage of topics such as nucleosides, amino-sugars, alditols and cyclitols also covers much research of relevance to biological and medicinal chemistry. Each volume of the series brings together references to all published work in given areas of the subject and serves as a comprehensive database for the active research chemist Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This book provides an introductory and general overview of advances in polymers towards their employment as antimicrobial materials. The author describes current approaches for avoiding microbial contamination, toward macro-molecular antibiotics, and prevention of antibiotic-resistant bacteria by use of polymers. He establishes the remaining issues and analyzes existing methodologies for treating bacterial infections and for preparing antimicrobial materials. |
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
90 Rules For Entrepreneurs - Your Guide…
Marnus Broodryk
Paperback
![]()
Journal of the Royal Asiatic Society of…
Royal Asiatic Society of Great Ireland
Paperback
R713
Discovery Miles 7 130
|