![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
Constitutive Models for Rubber XII is a comprehensive compilation of the oral and poster contributions to the XII European Conference on Constitutive Models for Rubbers (Milan, Italy, 7-9 September 2022). As the first after the COVID Pandemic, the XII edition again brought together researchers from the industry and the academia working in the field of elastomer technology and science to discuss the most recent advancement in the following topics: * Constitutive models * Micro-structural investigations * Experimental methods and characterization * Numerical methods * Fatigue and fracture * Aging * Industrial applications * Smart elastomer materials: applications and modelling Including more than 80 contributions from authors from around the world, this book aims at professionals and academics interested in elastomer technology and science.
This book provides an introduction of how radiation is processed in polymeric materials, how materials properties are affected and how the resulting materials are analyzed. It covers synthesis, characterization, or modification of important materials, e.g. polycarbonates, polyamides and polysaccharides, using radiation. For example, a complete chapter is dedicated to the characterization of biodegradable polymers irradiated with low and heavy ions. This book will be beneficial to all polymer scientists in the development of new macromolecules and to all engineers using these materials in applications. It summarizes the fundamental knowledge and latest innovations in research fields from medicine to space.
This book covers various molecular, metal-organic, dynamic covalent, polymer and other gels, focusing on their driving interactions, structures and properties. It consists of six chapters demonstrating interesting examples of these gels, classified by the type of driving interaction, and also discusses the effect of these interactions on the gels' structures and properties. The book offers an interesting and useful guide for a broad readership in various fields of chemical and materials science.
Most photovoltaic (PV) installations utilise heavy conventional glass or polycarbonate panels, and even newly developed thin plastic or metal films for PV cell use may fracture during both construction and application. Textile fabrics, the most widespread flexible materials in everyday use, offer a solution to the need for lightweight, flexible solar PV generators. Solar Textiles: The Flexible Solution for Solar Power is about the incorporation and operation of solar cells on textile fabrics. The combination of textile manufacturing and solar PV cell technology opens up further avenues for both the textile and semiconductor industries. Thus, this book reflects the progressively increasing commercial interest in PV cell technology and the versatility that their integration in textiles provides. Discusses textiles as electrical substrates Explains the photovoltaic effect and associated parameters Offers special consideration of solar cells on textiles Compares fibres and fabrics and how to implement PV activity on a textile Describes manufacturing methods outside of semiconductor technology Includes applications open only to textiles This work is aimed at textile technologists, electronic engineers, solar technologists, civil engineers and designers in building fabrics and architecture.
In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for treatment of humans. In addition to polysilicates and polyphosphate, there are a series of other inorganic polymers including polyarsenate and polyvanadate, whose biological / biomedical properties have been only marginally studied so far. Moreover, the combined application of inorganic polymers and organic polymeric molecules (formation of organic-inorganic hybrid materials) provides a variety of new materials with novel property combinations and diverse applications in nanomedicine. The planned book summarizes the present state of knowledge on a large group of inorganic polymers that had hitherto been mainly considered with regard to their chemistry but not comprehensively reviewed with respect to their potential biomedical applications.
This book focuses on different aspects of microplastic pollution, offering authors and readers the opportunity to share their knowledge, identify issues and propose solutions and actions to face this environmental threat. Although plastic pollution is a well-known global problem, the recent discovery of microplastics and nanoplastics in seas and oceans represents a very alarming new environmental challenge. The book offers comprehensive insights into the origins of the problem, its impact on marine environments, particularly the Mediterranean Sea and coasts, and the current research trends aimed at finding technical solutions to mitigate the phenomenon. It is primarily intended for scientists and decision makers from industry, international, national and local institutions and NGOs
Biomaterials science has advanced dramatically in the past 50 years with the increased cooperation between engineers chemists and biologists. Whilst previously biomaterials may have been erroneously thought to encompass dressing materials or implant structures designed to replace damaged or diseased tissue, the range of clinical applications of these materials is immense. Truly "Smart" biomaterials, which have the ability to recognise, respond to and even record their environment, now exist. The presentations in this volume reflect the true inter-disciplinary nature of biomaterials science; with contributions from polymer chemists, engineers, biologists and clinicians. The presentations show the potential of these collaborations and describe how advanced biomaterials have and are being employed not only in theraputic applications, but also increasingly in diagnosis and treatment in medical science.
LCs are self-organized anisotropic fluids that are thermodynamically located between the isotropic liquid and the crystalline phase, exhibiting the fluidity of liquids as well as the long-range lattice order that can only be found in crystalline solids. The addition of nanomaterials to a LC material produces a composite or colloidal dispersion and results into a revolutionary change in their applications. This book will discuss the remarkable performances of nano-particle aided liquid crystals in metamaterials, photonics, functionalized polymer fibres, sensing, and medical diagnostics.
This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This book presents select papers presented at the annual meeting of the Asian Polymer Association. The chapters in this volume document and report on a wide range of significant recent results for various applications, as well as scientific developments in the areas of polymer science and engineering. The chapters include original research from all areas of polymer science and technology with a focus on the manufacture, processing, analysis and application of long chain polymer molecules. This book will be of interest to researchers in academia and industry alike.
Carbohydrate Chemistry provides review coverage of all publications relevant to the chemistry of monosaccharides and oligosaccharides in a given year. The amount of research in this field appearing in the organic chemical literature is increasing because of the enhanced importance of the subject, especially in areas of medicinal chemistry and biology. In no part of the field is this more apparent than in the synthesis of oligosaccharides required by scientists working in glycobiology. Clycomedicinal chemistry and its reliance on carbohydrate synthesis is now very well established, for example, by the preparation of specific carbohydrate- based antigens, especially cancer-specific oligosaccharides and glycoconjugates. Coverage of topics such as nucleosides, amino-sugars, alditols and cyclitols also covers much research of relevance to biological and medicinal chemistry. Each volume of the series brings together references to all published work in given areas of the subject and serves as a comprehensive database for the active research chemist Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Taking the most common polymers this undergraduate textbook describes the basic principles of polymer science. Using polymers with which students will be familiar, for example polystyrene and PVC, this book relates the structure of polymers to their properties, and explains how and their properties can be tailored for a particular use.
In the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as novel general views and concepts which help to advance our understanding of polymer crystallisation, nucleation phenomena, long living melt structures affecting crystallization, confinement effects on crystallization, crystallization in flowing melts, fluid mobility restrictions caused by crystallites, the role of mesophases in the crystal formation and presents new ideas in a connected and accessible way. The intention is thus not only to provide a summary of the present state of the art to all active works but to provide an entry point to newcomer and graduate students entering the field.
This book provides information about the sources, structure, and properties of keratin as well as its applications. The extraction from different biomass sources (e.g. feathers, hairs, nails, horn, hoof, and claws) as well as the characterization methods of these extracted materials are explained. The development of bioproducts from keratins is challenging and limited since they are neither soluble in polar solvents nor in non-polar solvents. Therefore, the utilization of different microorganisms for the degradation of keratin is also discussed. The main aim of this book is to highlight the unique features of keratin and to update readers with the possible prospects to develop various value-added products from keratins. The book is highly interesting to researchers working in industry and academia on bioproducts, tissue engineering, biocomposites, biofilm, and biofibers.
Concerned primarily with the determination of the size of polymer molecules in solution, their sequence structure and also molecular weight characteristics, this book includes contributions relating to molecular weight and molecular weight characteristics using conventional chromatographic techniques, spectroscopic techniques describing determination of sequence structure, and scattering techniques concerned with the determination of macromolecular size. The book will be invaluable for postgraduate and research polymer chemists and all those who are concerned with the study and use of macromolecular materials. The techniques described reflect some of the most recent advances which have been made in the development of methods for molar mass characterisation and also the size of molecules in solution and solid phases. The problem of molar mass characterisation is common to synthetic and biological polymers, hence this book will also be of interest to biologists, polymer engineers and technologists. Techniques covered include: Temperature Rising Elution Fractionation Field Flow Fractionation Static and Dynamic Light Scattering Neutron Scattering Vapour Pressure Osmometry/Viscometry Ultrafugation and Sedimentation Gel Electrophoresis of Biological Macromolecules Mass Spectrometry of Polymers
This book highlights novel applications of innovative fabrics in the design of an interlayer between the scalp and the helmet lining of motorcycle helmets to control the temperature inside the helmet. It examines various fibre microstructure configurations and fibre treatments in terms of their ability to assist in the dissipation of heat from the scalp. The findings presented here will be of considerable benefit to motorcyclists in South East Asia and other tropical regions.
The long-awaited Third Edition of the classic in polymer synthesis Thirty years ago, the Second Edition of Preparative Methods of Polymer Chemistry further established its reputation as the laboratory bible for polymer synthesis. The last three decades have witnessed a deeper understanding of the principles involved in preparing and processing polymers, leading to tremendous advances in polymer synthesis. Guiding practicing scientists through the methods of synthesizing polymers, the Third Edition retains theory and vital protocols, while revising and updating the sections on synthesis, fabrication techniques, and characterization methods. Delving into the physical and chemical aspects of polymer processing, each chapter includes a discussion of the relevant background and principles, enabling the scientist to apply synthetic techniques intelligently. The Third Edition also contains sections on current topics such as:
Preparative Methods of Polymer Chemistry, Third Edition provides essential information for both students and practicing polymer scientists.
Current pharmaceutical and clinical approaches to the treatment of disease suffer from the inherent limitations in the specialization of drugs introduced to physiological systems. The interface of clinical and material sciences has allowed for a broad spectrum of creative approaches with the potential to alleviate these shortcomings. However, the synergy of these disciplines also presents problems in which nascent technology lacks the necessary evaluation within its intended clinical environment. Given the growing potential for materials science to address a number of unanswered therapeutic needs, it remains even more pressing to validate emerging drug delivery technologies in actual clinical environments. Drug Delivery: Materials Design and Clinical Perspective addresses the core fundamentals of drug delivery using material science and engineering principles, and then applies this knowledge using prominent examples from both the scientific literature and clinical practice. Each chapter focuses on a specific drug delivery technology, such as controlled-release materials, thin-film materials, or smart materials. Within each chapter, an initial section on "Engineering Concepts" reviews the relevant fundamental principles that guide rational design. The following section on "Materials Design" discusses how the design process applies engineering concepts for use in physiological systems. A third section on "Implementation" discusses current approaches in the literature which have demonstrated effective drug delivery in controlled environments. Finally, each chapter contains several sections on "Clinical Applications" which describe the validity of materials approaches from a clinical perspective; these sections review the safety and efficacy of drug delivery systems for specific, compelling medical applications. The book thereby bridges materials science with clinical medicine, and provides the reader with a bench-to-bedside view of novel drug delivery systems. * Provides a comprehensive description of drug delivery systems from a materials perspective * Includes a wide-ranging discussion of clinical applications of drug delivery systems * Presents separate chapters on controlled release materials, thin film materials, self-microemulsifying materials, smart materials, etc. * Covers fundamental engineering principles, rational materials design, implementation testing, and clinical applications for each material type
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy-not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
This book approaches the analysis of forensic contact traces from a polymer science perspective. The development of characterization methods of new or unusual traces and the improvement of existing protocols is described. The book starts with a general introduction to polymers and the issues related to transfer, persistence and recovery of polymeric traces. The chapters present a distinctive feature of polymers, discussing how it can be measured, what the practical difficulties which can be encountered in the analysis, and how useful that information is for comparison or identification purposes. Practical tips for the realization of the forensic analyses are included.
This review book focuses on the structure-property relationships of polyurethane nanocomposite foams in comparison with those of conventional polyurethane composite foams. The thermal insulation properties of polyurethane foam nanocomposites are discussed along with other traits such as their morphology, mechanical and thermomechanical properties, thermal degradation and flammability, energy absorption and saving capability, recycling and recovery behavior. In turn, the book discusses potential applications of PU nanocomposite foams and outlines the main problems that remain to be solved with regard to this important topic.
Polyoxometalates are anionic metal-oxo nanoclusters, which constitute a unique class of compounds owing to their rich solution equilibria and their unique compositional, electronic, reactive, and structural diversity. This book reviews metal-oxide cluster chemistry by covering topics ranging from fundamental aspects (i.e., structure, properties, self-assembly processes, derivatization) to functional materials that incorporate these molecular units, as well as their applications in the fields of current socioeconomic interest, such as energy storage systems, catalysis, molecular electronics, and biomedicine. Edited by prominent researchers in the field of polymer and polyoxometalate chemistries, the book compiles contributions from some of the most distinguished and promising scientists worldwide in such a way that it will appeal to a general readership involved in research areas related to chemistry and materials science.
This book broadens the knowledge of tribology. This book is evolved out of current research trends on tribological performance of systems related to nano tribology, rheology, engines, polymer brushes, composite materials, erosive wear and lubrication. The book deals with enhancing the ideas on tribological properties, the different types of wear phenomenon and lubrication enhancement. Further, the tribological performance of systems, whether nano, micro or macro-scale, depends upon a large number of external parameters and important among them are temperature, contact pressure and relative speed. Thus, the book focus on the theoretical aspects to industrial applications of tribology. |
You may like...
Contemporary Architecture - Masterpieces…
Markus Sebastian Braun
Hardcover
R1,729
Discovery Miles 17 290
Modern Regionalism - The Architecture of…
Supreet Singh Bahga
Hardcover
R1,916
Discovery Miles 19 160
The Profiler Diaries - From The Case…
Gerard Labuschagne
Paperback
(2)
|