![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
The first four volumes of the series on 'Charged and Reactive Polymers' have been devoted to polymers in solution (Voh. I and II) or in gel and membrane forms (Vols. III and IV). In correlation with charges, other physical or chemical properties of macro molecules have been considered. Understanding of charge and hydrophobic effects is equally important for synthetic and biopolymers or their systems. Optically Active Polymers are related to problems of the same class, since optical activity is an inherent property of both natural macromolecules as well as a great variety of polymers synthesized in the Jast twenty years. Optical activity is a physical spectral property of chiral matter caused by asymmetrical configurations, conformations and structures which have no plane and no center of symmetry and consequently have two mirror image enantiomeric forms of inverse optical rotation. The racemic mixture of chiral enantiomers is optically inactive. The most common form of optical activity was first measured at a constant wavelength by the angle of rotation of linearly polarized light. More recently the measurements have been extended to the entire range of visible and attainable ultraviolet regions where electronic transitions are observed, giving rise to the ORD technique (Optical Rotatory Dispersion). The Cotton effects appear in the region of optically active absorption bands; outside of these bands the plain curve spectrum is also dependent on all the electronic transitions of the chromophores."
The book provides practical recommendations for creation of fire retardant materials with an increased service life. The enhanced fire resistance seen in these materials is based on the regularities of the chemical and physicochemical interaction of the components of intumescent composition in the process of thermolytic synthesis of heat-insulating char-foamed layers. The aim of fire protection of various objects with intumescent materials is to create a heat-insulating charred layer on the surface of structural elements; this layer can withstand high temperatures and mechanical damage which are typical during fires. The authors describe the contribution of basic components (melamine, pentaerythritol, ammonium polyphosphate), additional components (chlorinated paraffin, urea, cellulose, carbon nano additives, etc.) and polymer binders of intumescent compositions on the process of charring. The technological aspects of manufacturing, application and operation of fire retardant intumescent compositions, which can be useful for organizations that produce and use fire retardant materials, are also described.
In the past few decades, marine organisms, including macroalgae and microalgae, have been extensively explored as potential sources of bioactive compounds with applications in various fields such as pharmaceuticals, biomedicine, cosmetics and foodstuffs. Marine polysaccharides, such as chitin/chitosan, ulvans, fucans, alginates and carrageenans, are biochemical compounds with several important properties such as anticoagulant and/or antithrombotic, immunomodulatory, antitumor, antilipidemic, hypoglycemic, antibiotic, anti-inflammatory and antioxidant properties. Due to their biocompatible, nontoxic and biodegradable nature, marine polysaccharides offer a better alternative to be used in advancement of the biomedical field. This book focuses on marine polysaccharides; their derivatives, blends, composites and hydrogels; and their multifaceted applications in various fields. The book also discusses the various aspects of marine polysaccharides from the point of view of chemistry and related applications. It is an important reference for marine biotechnologists, natural product scientists, students, researchers and academicians working in the area of materials science, marine science and polymer chemistry.
This book discusses the fundamental of bending actuation with a focus on ionic metal composites. It describes the applications of ionic polymer metal composite (IPMC) actuators, from conventional robotic systems to compliant micro robotic systems used to handle the miniature and fragile components during robotic micro assembly. It also presents mathematical modelings of actuators for engineering, biomedical, medical and environmental systems. The fundamental relation of IPMC actuators to the biomimetic systems are also included.
Details laboratory and industrial synthesis and applications of oligomers-suggesting practical solutions to the on-the-job problems as well as exploring processing devices and techniques for industrial-scale production of new oligomer types.
This book discusses the recent innovations in the development of various advanced biopolymeric systems, including gels, in situ gels, hydrogels, interpenetrating polymer networks (IPNs), polyelectrolyte complexes (PECs), graft co-polymers, stimuli-responsive polymers, polymeric nanoparticles, nanocomposites, polymeric micelles, dendrimers, liposomes and scaffolds. It also examines their applications in drug delivery.
A large amount of experimental data has been published since the debut of the original CRC Handbook of Thermodynamic Data of Aqueous Polymer Solutions. Incorporating new and updated material, the CRC Handbook of Phase Equilibria and Thermodynamic Data of Aqueous Polymer Solutions provides a comprehensive collection of thermodynamic data of polymer solutions. It helps readers quickly retrieve necessary information from the literature, and assists researchers in planning new measurements where data are missing. A valuable resource for the modern chemistry field, the Handbook clearly details how measurements were conducted and methodically explains the nomenclature. It presents data essential for the production and use of polymers as well as for understanding the physical behavior and intermolecular interactions in polymer solutions.
The book summarizes recent international research and experimental developments regarding fatigue crack growth investigations of rubber materials. It shows the progress in fundamental as well as advanced research of fracture investigation of rubber material under fatigue loading conditions, especially from the experimental point of view. However, some chapters will describe the progress in numerical modeling and physical description of fracture mechanics and cavitation phenomena in rubbers. Initiation and propagation of cracks in rubber materials are dominant phenomena which determine the lifetime of these soft rubber materials and, as a consequence, the lifetime of the corresponding final rubber parts in various fields of application. Recently, these phenomena became of great scientific interest due to the development of new experimental methods, concepts and models. Furthermore, crack phenomena have an extraordinary impact on rubber wear and abrasion of automotive tires; and understanding of crack initiation and growth in rubbers will help to support the growthing number of activities and worldwide efforts of reduction of tire wear losses and abrasion based emissions.
Radio Frequency Identification (RFID) Technology and Application in Fashion and Textile Supply Chain highlights the technology of Radio Frequency Identification (RFID) and its applications in fashion and textile manufacturing and supply chain management. It discusses the brief history, technology, and working of RFID including the types of RFID systems. It compares differences, advantages, and disadvantages of RFID and barcode technologies. It also covers application of RFID technology in textile and fashion manufacturing, supply chain, and retail, and RFID-based process control in textile and fashion manufacturing. It covers various applications of RFID starting from fibre manufacturing through yarn and fabric manufacturing; fabric chemical processing; garment manufacturing and quality control; and retail management. It offers case studies of RFID adoption by famous fashion brands detailing the competitive advantages and discusses various challenges faced and future directions of RFID technology.
The triggered release of functional compounds from such polymeric carriers as micelles, nanoparticles or nanogels is a rapidly developing and highly versatile concept which is expected to be one of the key approaches to future therapeutics. In his thesis, Daniel Klinger highlights the approach of stimuli-responsive microgels for such applications and discusses why especially light as a trigger has an outstanding position amongst the family of conventional stimuli. Based on these considerations, the author focuses on the design, synthesis and characterization of novel photo-sensitive microgels and nanoparticles as potential materials for the loading and light-triggered release/accessibility of functional compounds. Starting from the synthesis of photo-cleavable organic building blocks and their use in the preparation of polymeric nanoparticles, continuing to the examination of their loading and release profiles, and concluding with biological in vitro studies of the final materials, Daniel Klinger's work is an excellent example of the multidisciplinary research needed for the successful development of new materials in this field and has led to a number of further publications in internationally respected journals.
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
This book provides an overview of polymer nanocomposites and hybrid materials with polyhedral oligomeric silsesquioxanes (POSS). Among inorganic nanoparticles, functionalized POSS are unique nano-building blocks that can be used to create a wide variety of hybrid and composite materials, where precise control of nanostructures and properties is required. This book describes the influence of incorporation of POSS moieties into (organic) polymer matrices on the mechanical, thermal and flammability behavior of composites and hybrid organic-inorganic materials. Importantly, POSS-containing materials can be bio-functionalized by linking e.g. peptides and growth factors through appropriate surface modification in order to enhance the haemo-compatibility of cardiovascular devices made of these materials. This volume includes descriptions of synthesis routes of POSS and POSS-containing polymeric materials (e.g. based on polyolefines, epoxy resins and polyurethanes), presentation of POSS' role as flame retardants and as biocompatible linker, as well as the depiction of decomposition and ageing processes.
This book represents the proceedings of the First International Conference on Frontiers of Polymer Research held in New Delhi, India during January 20-25, 1991. Polymers have usually been perceived as substances to be used in insulations, coatings, fabrics, and structural materials. Defying this classical view, polymers are emerging as a new class of materials with potential applications in many new technologies. They also offer challenging opportunities for fundamental research. Recognizing a tremendous growth in world wide interest in polymer research and technology, a truly global "1st International Conference on Frontiers of Polymer Research" was organized by P. N. Prasad (SUNY at Buffalo), F. E. Karasz (University of Massachusetts) and J. K. Nigam (Shriram Institute for Industrial Research, India). The 225 participants represented 25 countries and a wide variety of academic, industrial and government groups. The conference was inaugurated by the Prime Minister of India, Mr. Chandra Shekhar and had a high level media coverage. The focus of the conference was on three frontier areas of polymer research: (i) Polymers for photonics, where nonlinear optical properties of polymers show great promise, (ii) Polymers for electronics, where new conduction mechanisms and photophysics have generated considerable enthusiasm and (iii) High performance polymers as new advanced polymers have exhibited exceptionally high mechanical strength coupled with light weight.
Multiscale Fibrous Scaffolds in Regenerative Medicine, by Sowmya Srinivasan, R. Jayakumar, K. P. Chennazhi, Erica J. Levorson, Antonios G. Mikos and Shantikumar V. Nair; Stem Cells and Nanostructures for Advanced Tissue Regeneration, by Molamma P. Prabhakaran, J. Venugopal, Laleh Ghasemi-Mobarakeh, Dan Kai Guorui Jin and Seeram Ramakrishna; Creating Electrospun Nanofiber-Based Biomimetic Scaffolds for Bone Regeneration, by Eleni Katsanevakis, Xuejun Wen and Ning Zhang; Synthetic/Biopolymer Nanofibrous Composites as Dynamic Tissue Engineering Scaffolds, by J. A. Kluge and R. L. Mauck; Electrospun Fibers as Substrates for Peripheral Nerve Regeneration, by Jorg Mey, Gary Brook, Dorothee Hodde and Andreas Kriebel; Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering, by Vince Beachley, Eleni Katsanevakis, Ning Zhang, Xuejun Wen; Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications, by Pitt Supaphol, Orawan Suwantong, Pakakrong Sangsanoh, Sowmya Srinivasan, Rangasamy Jayakumar and Shantikumar V. Nair; Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery, by M. Prabaharan, R. Jayakumar and S. V. Nair.; Biomedical Applications of Polymer/Silver Composite Nanofibers, by R. Jayakumar, M. Prabaharan, K. T. Shalumon, K. P. Chennazhi and S. V. Nair.-"
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
This book reviews the latest research, development, and future potential of polyimides and green polymer chemistry. It combines the major interdisciplinary research in this area. Polymers with imidic structure, known as polyimides, are widely investigated owing to their practical implications in numerous industrial sectors. The book explains why polyimides offer versatility unparalleled in comparison to most other classes of macromolecules. In addition, developments in green polymer chemistry in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce "green" products and processes. Major advances include new uses of green processing methodologies, and green polymeric products. Imidic Polymers and Green Polymer Chemistry: New Technology and Developments in Process and Product is targeted to scientists, engineers, and students who are involved or interested in green polymer chemistry and imidic polymers. This book will serve as a valuable reference for those with an interest in synthesis of polyimides and the chemistry and physical chemistry of polyimide compounds.
Provides a platform related to fabrication and advancement of all categories of polymeric biomaterials Explores advancement of pertinent biomedical and drug delivery systems Includes a wide range of biomaterials and its application in diversified fields Gives out environmental justification of green biopolymers and their applications in water remediation Discusses advanced applications of bio-composite polymers viz. food packaging and anti-corrosive coatings
Covers synthesis, properties and applications of quantum dots Discusses the modern fabrication technologies, processing, nanostructure formation, and mechanisms of reinforcement of quantum dots-polymer nanocomposites Explores the properties of quantum dots-based polymer nanocomposites Discusses the biocompatibility, suitability, and toxic effects of quantum dots-based polymer nanocomposites Reviews recent innovations, applications, opportunities, and future directions in quantum dots-based polymer nanocomposites
This compilation provides advanced graduate students and researchers with a structured overview of olefin polymerization. Divided into eight chapters written byinternational experts, this book covers polymerization using various organotransition-metal catalysts, including early and late transition metal complexes, new trends in olefin oligomerization and related reactions. All authors address the historic and scientific backgrounds of the field as well as current research progress and potential for further research. The complete book is designed to present eight independent lectures and, because all authors are well versed in organometallic chemistry, each is based on a profound understanding of the reactions and structures of organotransition metal complexes. This book is an ideal accompaniment for researchers taking courses in olefin polymerization and also serves as a valuable resource for teachers and lecturers of chemistry when planning and researching material for advanced lecture courses. "
This book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.
This book reviews comprehensively the opportunities and responsibilities of science, society and politics to combat plastic pollution in marine and freshwaters. It provides insights on what information is needed, and from whom, and it outlines policies proposed by various institutions including OSPAR, HELCOM and the European Union. Plastic waste has become a global threat to the aquatic environment that does not stop at country borders. Meanwhile, there are many efforts in science, industry, commerce and governments to tackle the problem worldwide. School education, NGO public actions, voluntary trade reduction measures, governmental management options and governmental regulatory actions are part of the portfolio of efforts to deal with the problem. Together with the companion volume Plastics in the Aquatic Environment - Part I: Current Status and Challenges, it provides scientists, policymakers and environmental managers with essential reference information on how this problem is being solved, what challenges and barriers are expected and how they can be overcome.
Over the past 25 years or so there has been a revolution in the devel- mentoffunctionalpolymers. Whilemanypolymersascommoditiesrepresent huge markets, new materials with a high degree of functionality have been developed. Such specialty polymers play important roles in our day-to-day lives. The current volumes 213 and 214 of Advances in Polymer Science focus on photoresponsive polymers. In particular polymers that can either change the properties of a beam of light that passes through them or who change their properties in response to light. Volume 213 starts with an introd- tion to two-photon absorption by Rumi, Barlow, Wang, Perry, and Marder. In this chapter they develop the basic concepts of two-photon absorption, and describe structure-property relationships for a variety of symmetrical and unsymmetrical molecules. The applications of these materials in 3D - crofabrication of polymers, metals, and oxide materials are detailed in the chapterentitled"Two-PhotonAbsorberandTwo-PhotonInduced Chemistry" contributed by the same group of authors. Then Bel?eld, Bondar, and Yao describe the molecules, dendrimers, oligomers, and polymers that can be - cited by two-photonabsorption and their application in processing materials with three-dimensional spatial control in their chapter entitled "Two-Photon Absorbing Photonic Materials. " Speci?cally they describe the development of symmetrical and polar conjugated materials for two-photon absorption and their use as photo-initiatorsfor3D microfabrication. Juodkazis,Mizeikis, and Misawaalsoexploremultiphotonprocessingofmaterials intheirchapter,and provide more focus on the processing aspects of these materials and discuss thestate-of-the-artinresolution.
A practical handbook rather than merely a chemistry reference, Szycher's Handbook of Polyurethanes, Second Edition offers an easy-to-follow compilation of crucial new information on polyurethane technology, which is irreplaceable in a wide range of applications. This new edition of a bestseller is an invaluable reference for technologists, marketers, suppliers, and academicians who require cutting-edge, commercially valuable data on the most advanced uses for polyurethane, one of the most important and complex specialty polymers. internationally recognized expert Dr. Michael Szycher updates his bestselling industry "bible" With seven entirely new chapters and five that are revised and updated, this book summarizes vital contents from U.S. patent literature-one of the most comprehensive sources of up-to-date technical information. These patents illustrate the most useful technology discovered by corporations, universities, and independent inventors. Because of the wealth of information they contain, this handbook features many full-text patents, which are carefully selected to best illustrate the complex principles involved in polyurethane chemistry and technology. Features of this landmark reference include: Hundreds of practical formulations Discussion of the polyurethane history, key terms, and commercial importance An in-depth survey of patent literature Useful stoichiometric calculations The latest "green" chemistry applications A complete assessment of medical-grade polyurethane technology Not biased toward any one supplier's expertise, this special reference uses a simplified language and layout and provides extensive study questions after each chapter. It presents rich technical and historical descriptions of all major polyurethanes and updated sections on medical and biological applications. These features help readers better understand developmental, chemical, application, and commercial aspects of the subject. |
You may like...
The Other in Jewish Thought and History…
Laurence J. Silberstein, Robert L. Cohn
Hardcover
R2,911
Discovery Miles 29 110
Emerging Issues In Operations And Supply…
M. Mkansi, A. Amadi-Echendu, …
Paperback
R643
Discovery Miles 6 430
Introduction to the Design and Behavior…
John H. Bickford, Michael Oliver
Hardcover
R4,741
Discovery Miles 47 410
Small Animal Obesity, An Issue of…
Amy K Farcas, Kathryn E. Michel
Hardcover
R1,754
Discovery Miles 17 540
Studying and Designing Technology for…
Tejinder Judge, Carman Neustaedter
Paperback
|