![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material. Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry. Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.
The proposed book focusses on metal mediated/catalyzed "controlled/living radical polymerization" (CRP/LRP) methods. It surveys a wide variety of catalyzed polymerization reactions, making it essentially a "one stop" review in the field. A significant contribution to polymer science is "metathesis polymerization" discovered by Grubbs and others. The book will cover various metathesis polymerization methods and implications in polymer industry.
Discerning the properties of polymers and polymer-based materials requires a good understanding of characterization. This revised and updated text provides a comprehensive survey of characterization methods within its simple, concise chapters. Polymer Characterization: Physical Techniques, provides an overview of a wide variety of characterization methods, which makes it an excellent textbook and reference. It starts with a description of basic polymer science, providing a solid foundation from which to understand the key physical characterization techniques. The authors explain physical principles without heavy theory and give special emphasis to the application of the techniques to polymers, with plenty of illustrations. Topics covered include molecular weight determination, molecular and structural characterization by spectroscopic techniques, morphology and structural characterization by microscopy and diffraction, and thermal analysis. This edition contains a new chapter on surface analysis as well as some revised problems and solutions. The concise treatment of each topic offers even those with little prior knowledge of the subject an accessible source to relevant, simple descriptions in a well-organized format.
Paul John Flory: A Life of Science and Friends is the first full-length treatment of the life and work of Paul John Flory, recipient of the Nobel Prize in chemistry in 1974. It presents a chronological progression of his scientific, professional, and personal achievements as recounted and written by his former students and colleagues. This book covers the span of Flory's life, including a family history and reflections on the marks he left on the lives of various individuals within the scientific community. He played a major role in the consolidation of the macromolecular paradigm in chemistry, physics, and materials science. His influence permeates virtually every aspect of polymer science. The book includes an extensive collection of personal remembrances telling the circumstances under which colleagues worked with Flory, discussing their joint work, and assessing Flory's place in polymer science, chemistry, and world science. The contributors memorialize Flory for more than his scientific and technical contributions. Several chapters are written by living friends who reflect upon his impact on their work and careers. He also played a role in human rights within the scientific community, making efforts to liberate scientists who lived and worked behind the Iron Curtain, particularly in the Soviet Union. Paul John Flory: A Life of Science and Friends illustrates an example of an individual of scientific and personal excellence. His living friends and colleagues believe his story must be told. In telling it and making it available for future generations, his closest friends and colleagues ensure his continued inspiration to people in and outside laboratories worldwide.
Thoroughly updated, Introduction to Polymers, Third Edition presents the science underpinning the synthesis, characterization and properties of polymers. The material has been completely reorganized and expanded to include important new topics and provide a coherent platform for teaching and learning the fundamental aspects of contemporary polymer science. New to the Third EditionPart IThis first part covers newer developments in polymer synthesis, includingliving radical polymerization, catalytic chain transfer and free-radical ring-opening polymerization, along with strategies for the synthesis of conducting polymers, dendrimers, hyperbranched polymers and block copolymers. Polymerization mechanisms have been made more explicit by showing electron movements. Part IIIn this part, the authors have added new topics on diffusion, solution behaviour of polyelectrolytes and field-flow fractionation methods. They also greatly expand coverage of spectroscopy, including UV visible, Raman, infrared, NMR and mass spectroscopy. In addition, the Flory Huggins theory for polymer solutions and their phase separation is treated more rigorously. Part IIIA completely new, major topic in this section is multicomponent polymer systems. The book also incorporates new material on macromolecular dynamics and reptation, liquid crystalline polymers and thermal analysis. Many of the diagrams and micrographs have been updated to more clearly highlight features of polymer morphology. Part IVThe last part of the book contains major new sections on polymer composites, such as nanocomposites, and electrical properties of polymers. Other new topics include effects of chain entanglements, swelling of elastomers, polymer fibres, impact behaviour and ductile fracture. Coverage of rubber-toughening of brittle plastics has also been revised and expanded.
This new book covers the synthetic as well application aspects of functional polymers. It highlights modern trends in the field and showcases the recent characterization techniques that are being employed in the field of polymer science. The chapters are written by top-notch scientists who are internationally recognized in the field. The chapters will highlight the modern trend in the field.
This successful textbook undergoes a change of character in the third edition. Where earlier editions covered organic polymer chemistry, the third edition covers both physical and organic chemistry. Thus kinetics and thermodynamics of polymerization reactions are discussed.
Telechelic polymers have garnered a great deal of scientific interest due to their reactive chain-end functions. This comprehensive book compiles and details the basic principles of and cutting-edge research in telechelic polyesters, polycarbonates, and polyethers, ranging from synthesis to applications. It discusses general strategies toward telechelic polymers, centered on the fundamental aspects of polycondensation reactions, of cationic, anionic, coordination-insertion, and activated monomer mechanisms of the metal-, enzyme-, or otherwise organocatalyzed ring-opening polymerization of cyclic monomers, and of postpolymerization chemical modification methods of polymer precursors. All main classes of polymers are covered separately, comprising polyhydroxyalkanoates, poly( -caprolactone)s, poly(lactic acid)s, polylactides, polycarobnates, and polyethers, including synthetic approaches as well as some illustrative, up-to-date examples and uses. The book also addresses applications of hydroxyl, thiol, amino, or acrylate/methacrylate end-capped polymers as starting materials for the preparation of diverse polymer architectures ranging from block, graft, and star-shaped polymers and micelles to precursors for ATRP macroinitiators, polyurethane copolymers, shape-memory polymers, or nanosized drug delivery systems. The book will appeal to advanced undergraduate- and graduate-level students of polymer science; researchers in macromolecular science, especially those with an interest in functional and reactive polymers; and polymer chemists in academia and industry.
With global capacity in excess of 5 million tons annually, phenolic resins are one of the leading thermosetting resins that are used in many diverse industries such as wood adhesives, fiberglass/mineral wool binder, molded materials for autos/electronic/electrical industries, brakes, abrasives, foam, coatings/adhesives, laminates, composites, metal castings/refractories, and rubber industry. These phenolic resin business areas are critical to the national economy and general welfare of emerging and developed nations. Although phenolic resins are barely noticed in these applications, it is difficult to imagine their absence since they are vital and not easily replaced by other polymeric materials due to favorable cost/performance characteristics of phenolic resins. In this new book these application areas are summarized and updated by global phenolic experts that are engaged daily in these activities. Further new technology and application areas of global technical activity are presented and include nanotechnology, updated phenolic resin chemistry, carbon fiber and long glass fiber reinforced molding materials, new analyses/testing, carbon foam, carbon/carbon brakes for autos, photo resists, new fiber reinforced systems, renewable raw materials, and recycling. It is anticipated that the new book will feature a global perspective of phenolic resins through the participation of international (North America, Europe and Asia) phenolic experts that was lacking in all previous books related to phenolic resins.
Bioactive Carbohydrate Polymers is probably the first book dealing with the latest in the field of polysaccharides and related products and their biological activities, especially the immunological effects. The different chapters describe the structure and bioactivity of polysaccharides from plants used in traditional medicine in different parts of the world, especially China, Japan and Europe. The focus of the book is on immunologically active plant and seaweed polysaccharides, pharmacological activities of sulphated polysaccharides of animal and seaweed origin, and on possible activities of polysaccharides in our food. Methods for isolation and characterisation of the polymers with chemical and enzymatic methods is covered, as well as discussions on the different biological test-systems and the information they provide. This book will be useful to scientists and postgraduate students working with polysaccharides and their possible uses, and should be of interest for people working in the areas of chemistry, biology, pharmacy and medicine.
Conjugated polymeric materials and their nanocomposites are widely used for the creation of alternative sources of renewable energy, cell phone screens, mobile gadgets, video players and OLED-TV, as well as organic diodes, transistors, sensors, etc. with field-dependent and spin-assisted electronic properties. Multifrequency EPR Spectroscopy methods can help researchers optimize their structural, magnetic and electronic properties for the creation of more efficient molecular devices. This book will acquaint the reader with the basic properties of conjugated polymers, the fundamentals of EPR Spectroscopy, and the information that can be obtained at different wavebands of EPR spectroscopy.
This book focuses on important aspects of materials chemistry by providing an overview of the theoretical aspects of materials chemistry, by describing the characterization and analysis methods for materials, and by explaining physical transport mechanisms in various materials. Not only does this book summarize the classical theories of materials chemistry, but also it exhibits their engineering applications in response to the current key issues. The chapters provide practical equations, figures, and references, providing suitable complement to the text. This book is designed to provide important information for scientists and engineers on experimental research in materials chemistry using modern methods. The methods and instrumentation described represent modern analytical techniques useful to researchers, product development specialists, and quality control experts in polymer synthesis and manufacturing.
The dielectric properties especially of glassy materials are nowadays explored at widely varying temperatures and pressures without any gap in the spectral range from Hz up to the Infrared, thus covering typically 20 decades or more. This extraordinary span enables to trace the scaling and the mutual interactions of relaxation processes in detail, e.g. the dynamic glass transition and secondary relaxations, but as well far infrared vibrations, like the Boson peak. Additionally the evolution of intra-molecular interactions in the course of the dynamic glass transition is also well explored by (Fourier Transform) Infrared Spectroscopy. This volume within 'Advances in Dielectrics' summarizes this knowledge and discusses it with respect to the existing and often competing theoretical concepts.
First Published in 1996. Routledge is an imprint of Taylor & Francis, an informa company.
As the title suggests, this monograph features the physicochemical behavior and supramolecular organization of polymers. The book consists of four chapters dealing with solution properties, viscoelastic behavior, physicochemical aspects at interfaces and supramolecular structures of polymeric systems. The classical treatment of the physicochemical behavior of polymers is presented in such a way that the book will meet the requirements of a beginner in the study of polymeric systems in solution and in some aspects of the solid state, as well as those of the experienced researcher in other types of materials. Physicochemical behavior and Supramolecular Organization of Polymers is ultimately, a contribution to the chemistry of materials; it is a powerful reference tool for students and scientists working both in polymer chemistry, polymer physics and materials science.
This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with their relevance for applications. A comprehensive part of the book deals with properties of polymers in the molten state and their decisive influence on the processing of the materials. The book presents and discusses viscous andelastic properties in detail as a function of molar mass, polydispersity, and branching. This book addresses students of polymer and materials science, as well as other natural sciences. Besides this educational value, it will also serve as a valuable monograph for everyone dealing with polymers and polymeric materials, from research, over development, to applications."
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume One provides the principles and foundations for the design, development, manufacture and processing of reactive and functional polymers based primarily on biopolymers, polyesters and polyurenthanes. The text provides an in-depth review of updated sources on reactive resins and silicones. In this book, world-renowned researchers have participated, including Dr. Runcang Sun (Associate editor for the journal 'Carbohydrate Polymers'). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
This important work is based on the editors symposium at the 2005 ACS meeting in Washington, DC. The contents include an emphasis on main-group polymers, including boron. The chapters are not simply journal articles, but have real added value as the editors have reviewed the general area by placing the work into a larger perspective. This book will be required reading for scientists in a number of disciplines including chemical engineers and physics researchers.
This new book explores the consideration of relationships that connect the structural and basic mechanical properties of polymeric mediums within the frameworks of fractal analysis with cluster model representations attraction. Incidentally, the choice of any structural model of medium or their combinations is defined by expediency and further usage convenience only. This book presents leading-edge research in this rapidly changing and evolving field. The book presents descriptions of the main reactions of high-molecular substances within the frameworks of fractal analysis and irreversible aggregation models. Synergetics and percolation theory were also used. In spite of the enormous number of papers dealing with the influence of the medium on the rate of chemical reactions (including synthesis of polymers), no strict quantitative theory capable of "universal" application has been put forward up until now. It is now possible to describe the relationship between the reaction rate constants and the equilibrium constants with the nature of the medium in which the reactions take place by means of a single equation. This important book for the first time gives structural and physical grounds of polymers synthesis and curing, and the fractal analysis is used for this purpose. This new book: * Highlights some important areas of current interest in polymer products and chemical processes * Focuses on topics with more advanced methods * Emphasizes precise mathematical development and actual experimental details * Analyzes theories to formulate and prove the physicochemical principles * Provides an up-to-date and thorough exposition of the present state of the art of complex polymeric materials
This new two-volume set provides a broad overview of current studies in the engineering of polymers and chemicals with complexity" "of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemicals. Starting with a detailed introduction to the history of research on complex chemical systems and its current state of the art and perspectives, the books present chapters that survey the current progress in particular research fields. The chapters, prepared by leading international experts, create a fascinating picture of a rapidly developing research discipline that brings chemical technology and polymers to new frontiers. These books provide innovative chapters on the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers and provides a medium for mutual communication between international academia and the industry. Presenting significant research and reviews that report new methodologies and important applications in the fields of industrial chemistry, industrial polymers, and biotechnology, the books also cover chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
Cellulose-Based Graft Copolymers: Structure and Chemistry discusses the synthesis, characterization, and properties of multifunctional cellulose-based graft copolymers. Presenting the contributions of accomplished experts in the field of natural cellulosic polymers, this authoritative text: Offers an overview of cutting-edge technical accomplishments in natural cellulose-based graft polymers Addresses a separate biomaterial in each chapter, exploring composition as well as graft copolymerization chemistry Covers fundamentals and applications including toxic ion removal, biomedical engineering, biofuels, micro/nano composites, papermaking, building materials, and defense Cellulose-Based Graft Copolymers: Structure and Chemistry tackles several critical issues and provides suggestions for future work, supplying deeper insight into the state of the art of advanced cellulose-based graft copolymers.
This book provides a vast amount of information on new approaches, limitations, and control on current polymers and chemicals complexity of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemicals. Starting with a detailed introduction, the book is comprised of chapters that survey the current progress in particular research fields. The chapters, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical technology and polymers to new frontiers.
This book provides a broad overview of current studies in the engineering of polymers and chemicals of various origins. The innovative chapters cover the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers. This book publishes significant research and reviews reporting new methodologies and important applications in the fields of industrial chemistry, industrial polymers, and biotechnology, as well the latest coverage of chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
This new book-the first of its kind-examines the use of algorithmic techniques to compress random and non-random sequential strings found in chains of polymers. The book is an introduction to algorithmic complexity. Examples taken from current research in the polymer sciences are used for compression of like-natured properties as found on a chain of polymers. Both theory and applied aspects of algorithmic compression are reviewed. A description of the types of polymers and their uses is followed by a chapter on various types of compression systems that can be used to compress polymer chains into manageable units. The work is intended for graduate and postgraduate university students in the physical sciences and engineering. |
You may like...
Our Words, Our Worlds - Writing On Black…
Makhosazana Xaba
Paperback
Chinese Water Systems - Volume 1: Liaohe…
Yonghui Song, Beidou Xi, …
Hardcover
R1,583
Discovery Miles 15 830
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,057
Discovery Miles 40 570
Memorial Book of Hrubieshov (Hrubieszow…
Baruch Kaplinsky
Hardcover
|