![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This book commemorates the "Nobel Laureate Professor Suzuki Special Symposium" at the International Union of Material Research Society-International Conference on Advanced Materials (IUMRS-ICAM2017), which was held at Kyoto University, Japan, in 2017. The book begins with a foreword by Professor Akira Suzuki. Subsequently, many authors who attended the special symposium describe the latest scientific advances in the field of carbon materials and carbon nanomaterials including polymers, carbon nanocomposites, and graphene. Carbon-based materials have recently been the focus of considerable attention, given their wide range of potential applications. Fittingly, the chapters in this book cover both experimental and theoretical approaches in several categories of carbon-related materials.
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
"Presents the latest knowledge on a wide range of topics in polymer science, including the dynamics, preparation, application, and physiochemical properties of polymer solutions and colloids; the adsorption characteristics at polymer surfaces; and the adhesion properties (including acid-base) of polymer surfaces."
This book gives the reader an introduction to the field of surfactants in solution as well as polymers in solution. Starting with an introduction to surfactants the book then discusses their environmental and health aspects. Chapter 3 looks at fundamental forces in surface and colloid chemistry. Chapter 4 covers self-assembly and 5 phase diagrams. Chapter 6 reviews advanced self-assembly while chapter 7 looks at complex behaviour. Chapters 8 to 10 cover polymer adsorption at solid surfaces, polymers in solution and surface active polymers, respectively. Chapters 11 and 12 discuss adsorption and surface and interfacial tension, while Chapters 13- 16 deal with mixed surfactant systems. Chapter 17, 18 and 19 address microemulsions, colloidal stability and the rheology of polymer and surfactant solutions. Wetting and wetting agents, hydrophobization and hydrophobizing agents, solid dispersions, surfactant assemblies, foaming, emulsions and emulsifiers and microemulsions for soil and oil removal complete the coverage in chapters 20-25.
This volume covers various aspects of cross-linked polyethylene (XLPE). The contents include manufacture, morphology, structure, properties, applications, early stage development, cross-linking techniques, recycling process, physical and chemical properties as well as the scope and future aspects of XLPE. It focuses on the life cycle analysis of XLPE and their industrial applications and commercial importance. This book will be of use to academic and industry researchers, as well as graduate students working in the fields of polymer science and engineering, materials science, and chemical engineering.
This book comprehensively covers the different topics of wood polymer composite materials mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications. It also discusses the chemistry, fabrication process, properties, applications, recycling and life cycle assessment of wood polymer composites. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry and engineering courses.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume One provides the principles and foundations for the design, development, manufacture and processing of reactive and functional polymers based primarily on biopolymers, polyesters and polyurenthanes. The text provides an in-depth review of updated sources on reactive resins and silicones. In this book, world-renowned researchers have participated, including Dr. Runcang Sun (Associate editor for the journal 'Carbohydrate Polymers'). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
The book focuses on novel interpenetrating polymer network (IPN)/semi-IPN technologies for drug delivery and biomedical applications. The dynamism of the design and development of interpenetrating network polymers is based on their ability to provide free volume for the easy encapsulation of drugs in the three-dimensional network structure obtained by cross-linking two or more polymer networks. Natural polymer-based IPNs can deliver drugs at a controlled rate over an extended period of time, while novel IPNs ensure better mechanical strength and sustained/ controlled drug-delivery properties. This book presents an overview of the use of this technology to fabricate nanomedicine, hydrogels, nanoparticles, and microparticles, thereby unlocking IPN's potential in the area of drug delivery and biomedical engineering. It also discusses applications of IPN systems in cancer therapy and tissue engineering, and describes the various IPN systems and their wide usage and applications in drug delivery.
This book covers the performance aspects of nanocomposite supercapacitor materials based on transition metal oxides, activated carbon, carbon nanotubes, carbon nanofibers, graphene and conducting polymers. It compares the performance of simple electrode materials versus binary and ternary composites, while highlighting the advantages and challenges of different supercapacitor electrode materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
This book gathers selected papers presented at the 1st International Conference on Industrial Applications of Adhesives 2020 (IAA 2020). It covers a wide range of topics, including adhesive curing for electronic and automotive industries; adhesive testing with a torsion machine for rigorous mechanical properties determination; joint design using innovative techniques such as the meshless method; design methodologies in the automotive industry for joints under impact; temperature effects in joints typically found in civil engineering; and advanced nondestructive techniques such as terahertz spectroscopy to assess the durability of adhesive joints. Providing a review of the state-of the art in industrial applications of adhesives, the book serves as a valuable reference resource for researchers and graduate students interested in adhesive bonding.
Detailing commonly used methods and procedures, this reference discusses the reactions and derivative forms of carbohydrates. Preparative Carbohydrate Chemistry covers the formation, cleavage, and reactions of derivatives and illustrates bond-forming reactions of SN2 types, free radicals, chain extensions, and branching. The contents include: sugar derivatives; selected reactions in carbohydrate chemistry; chemical synthesis of oligosaccharides and O-and N -glycosyl compounds; enzymatic synthesis of sialic acid, KDO, and related deoxyulosonic acids, and of oligosaccharides; synthesis of -glycosyl compounds; carbocycles from carbohydrates; and total synthesis of sugars from non-sugars. This authoritative reference offers relevant chapters on reactions and derivative forms of carbohydrates, including commonly used methods as well as new experimental procedures. It also contains insightful chapter commentaries and succinct topic histories.
This proceedings book presents the main findings of the 13th International Seminar on Polymer Science and Technology ( ISPST 2018), which was held at Amirkabir University of Technology, Tehran, on November 10-22, 2018. This forum was the culmination of more than three decades of academic and industrial activities of Iranian scholars and professionals, and the participation of many notable international scientists, in covering various important polymer-related subjects of concern to Iran and the world at large, including polymer synthesis, processing and properties, as well as issues concerning polymer degradation, stability, and environmental aspects. For the past half a century, the growing concern for advancing human health, quality of life, and - especially in the last few decades - avoiding and combating environmental pollution have shaped and driven scientific activities geared toward the creation of smart materials that are compatible with the human body, and have prompted scientists and technologists to pursue research using natural and sustainable sources. This book highlights efforts to responsibly address the problems caused by, and which can potentially be solved by, polymers and plastics.
This book discusses the recent innovations in the development of various advanced biopolymeric systems, including gels, in situ gels, hydrogels, interpenetrating polymer networks (IPNs), polyelectrolyte complexes (PECs), graft co-polymers, stimuli-responsive polymers, polymeric nanoparticles, nanocomposites, polymeric micelles, dendrimers, liposomes and scaffolds. It also examines their applications in drug delivery.
All essential areas of basic synthetic carbohydrate chemistry are covered and appropriately described. In addition, this book explains the basic reaction mechanisms while taking into account modern concepts such as stereoelectronic principles.
This book broadens the knowledge of tribology. This book is evolved out of current research trends on tribological performance of systems related to nano tribology, rheology, engines, polymer brushes, composite materials, erosive wear and lubrication. The book deals with enhancing the ideas on tribological properties, the different types of wear phenomenon and lubrication enhancement. Further, the tribological performance of systems, whether nano, micro or macro-scale, depends upon a large number of external parameters and important among them are temperature, contact pressure and relative speed. Thus, the book focus on the theoretical aspects to industrial applications of tribology.
This book offers a systematic overview of polymer joining and highlights the experimental and numerical work currently being pursued to devise possible strategies to overcome the technical issues. It also covers the fundamentals of polymers, the corresponding joining processes and related technologies. A chapter on the extrapolation of finite element analysis (FEA) for forecasting the deformation and temperature distribution during polymer joining is also included. Given its breadth of coverage, the book will be of great interest to researchers, engineers and practitioners whose work involves polymers.
If one dismisses the Prophetess Deborah who in her famous song after the victory over the Philistines sang "The mountains melted before the Lord" and her contemporary (on our time scale), the Egyptian Amenemhet, who designed the water clock, which was in fact the prototype of the capillary viscometer, the beginnings of modern rheology should be linked up with the works of the classics of natural sciences of the 19th century: J ames Clerk Maxwell, Lord Kelvin, and Ludwig Boltzmann, whose names are associated with the origination of the fundamental concepts of rheology. The founda tions of experimental rheology were also laid in the nineteenth century in the works of J. M. L. Poiseuille, T. Schwedoff, and others. The next step in the advancement of rheology dates back to the twenties of this century when E. C. Bingham, G. W. Scott-Blair, A. Nadai, and M. Reiner developed the fundamentals of the engineering approach to the technological properties of real materials, thereby outlining the numerous potential applications of rheology. The progress of polymer rheology was especially vigorous after World War II when polymeric materials found their way into industry and the home. Today, rheology is 60-70 per cent concerned with investigations of this kind of materials. Polymer rheology has evolved as an independent science over the last 10-15 years and is in its various aspects intimately entwined with molecular physics, continuum mechanics, and the processing of polymeric materials."
This book addresses a broad range of issues concerning microplastic pollution, including microplastic pollution in various environments (freshwater, marine, air and soil); the sources, fate and effects of microplastics; detection systems for microplastic pollution monitoring; green approaches for the synthesis of environmentally friendly polymers; recovery and recycling of marine plastics; wastewater treatment plants as a microplastic entrance route; nanoplastics as emerging pollutants; degradation of plastics in the marine environment; impacts of microplastics on marine life; microplastics: from marine pollution to the human food chain; mitigation of microplastic impacts and innovative solutions; sampling, extraction, purification and identification approaches for microplastics; adsorption and transport of pollutants on and in microplastics; and lastly, the socio-economic and environmental impacts: assessment and risk analysis. In addition to presenting cutting-edge information and highlighting current trends and issues, the book proposes concrete solutions to help face this significant environmental threat. It is chiefly intended for researchers and industry decision-makers; international, national and local institutions; and NGOs, providing them with comprehensive information on the origin of the problem; its effects on marine environments, with a particular focus on the Mediterranean Sea and coasts; and recent and ongoing research activities and projects aimed at finding technical solutions to mitigate the phenomenon.
Conducting polymers are organic polymers which contain conjugation along the polymer backbone that conduct electricity. Conducting polymers are promising materials for energy storage applications because of their fast charge-discharge kinetics, high charge density, fast redox reaction, low-cost, ease of synthesis, tunable morphology, high power capability and excellent intrinsic conductivity compared with inorganic-based materials. Conducting Polymers-Based Energy Storage Materials surveys recent advances in conducting polymers and their composites addressing the execution of these materials as electrodes in electrochemical power sources. Key Features: Provides an overview on the conducting polymer material properties, fundamentals and their role in energy storage applications. Deliberates cutting-edge energy storage technology based on synthetic metals (conducting polymers) Covers current applications in next-generation energy storage devices. Explores the new aspects of conducting polymers with processing, tunable properties, nanostructures and engineering strategies of conducting polymers for energy storage. Presents up-to-date coverage of a large, rapidly growing and complex conducting polymer literature on all-types electrochemical power sources. This book is an invaluable guide for students, professors, scientists, and R&D industrial specialists working in the field of advanced science, nanodevices, flexible electronics, and energy science.
This book presents the most recent description of rubber reinforcement, focusing on the network-like structure formation of nanofiller in the rubber matrix under the presence of bound rubber. The resultant filler network is visualized by electron tomography applied to rubber. In the case of natural rubber, the self-reinforcement effect is uniquely functioning, and new template crystallization is suggested. Here, the crystallites are also believed to arrange themselves in a network-like manner. These results are of great use, particularly for engineers, in designing rubber reinforcement.
This volume provides perspectives on the approaches, mechanisms, test methods, durability considerations, and environmental concerns for contamination mitigating coatings and polymers with emphasis on their use in more extreme aerospace and marine terrestrial environments. Parts of the Volume are devoted to application of biomimetics to contamination mitigation polymeric coatings, low ice adhesion surfaces, insect residue adhesion resistance coatings, and marine biofouling mitigation materials. By juxtaposing ice insect, and marine mitigation approaches, researchers and users may more easily identify threads of similarity that will assist in future developments and potential applications in these areas. The volume is of interest to chemists and material scientists in providing awareness of both the need for efficacy in mitigating contamination and for appropriate coating durability; to physicists in providing better understanding of the interaction between the contaminant, the coated surface, and the surrounding environment; and to engineers in describing the need for better scale-up tests between laboratory and field environments.
This book presents synthesis methods, characterization techniques, properties and applications of hybrid conducting polymers. Special emphasis is given to the applications of hybrid conductive polymers, with chapters ranging from electronic devices, environmental remediation, and sensors, to medical applications.
This book covers nanotechnology based approaches for improving the therapeutic efficacy of natural products. It critically explores lipid nanoarchitectonics, inorganic particles and nanoemulsion based tools for delivering them. With its chapters from eminent experts working in this discipline, it is ideal for researchers and professionals working in the area.
This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike.
This book delivers a comprehensive overview of the characteristics of several types of materials that are widely used in the current era of supercapacitors; namely, architectured carbon materials, transition metal oxides and conducting polymers. It provides readers with a complete introduction to the fundamentals of supercapacitors, including the development of new electrolytes and electrodes, while highlighting the advantages, challenges, applications and future of these materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors. |
![]() ![]() You may like...
Advanced Introduction to Central Banks…
Jakob de Haan, Christiaan Pattipeilohy
Hardcover
R2,859
Discovery Miles 28 590
Financial Mathematics For Actuaries
Wai-Sum Chan, Yiu-Kuen Tse
Paperback
R1,312
Discovery Miles 13 120
Recent Advances in Technology Acceptance…
Mostafa Al-Emran, Khaled Shaalan
Hardcover
R5,645
Discovery Miles 56 450
Robust Discrete-Time Flight Control of…
Shuyi Shao, Mou Chen, …
Hardcover
R4,923
Discovery Miles 49 230
Predictor Feedback for Delay Systems…
Iasson Karafyllis, Miroslav Krstic
Hardcover
R3,975
Discovery Miles 39 750
Deep Learning for Unmanned Systems
Anis Koubaa, Ahmad Taher Azar
Hardcover
R6,475
Discovery Miles 64 750
Smart Computing Techniques and…
Suresh Chandra Satapathy, Vikrant Bhateja, …
Hardcover
R5,782
Discovery Miles 57 820
|