![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This new book examines the latest developments in the important and growing field of producing conventional polymers from sustainable sources. With recent advancements in synthesis technologies and the discovery of new functional monomers, research shows that green polymers with better properties can be produced from renewable resources. This volume describes these advances in synthesis, processing, and technology and provides not only state-of-the-art information but also acts to stimulate research in this direction. Green Polymer Chemistry and Composites: Pollution Prevention and Waste Reduction illustrates how chemical industries play an essential role to sustain the world economies and looks at forthcoming technologies and scientific developments in novel products, less toxicological materials, and industrial procedures with high efficiency and renewable energy products. Green chemistry seeks for the design of innovative chemical products with higher efficiency and lowest hazardous substances for the health and the environment.
. A.J. M ller, V. Balsamo, M.L. Arnal: Nucleation and Crystallization in Diblock and Triblock Copolymers.- 2 J.-F. Gohy: Block Copolymer Micelles.- 3 M.A. Hillmyer: Nanoporous Materials from Block Copolymer Precursors.- 4 M. Li, C. Coenjarts, C.K. Ober: Patternable Block Copolymers.-
Trends in Polymers Science and Technology: Globalization and Development of New Materials; Y. Ito. Polymers for Photonics: Novel Polymeric Composite Materials for Photonics; P.N. Prasad, et al. Polymers for Electronics: Conducting Polymers; A.G. MacDiarmid, A.J. Epstein. High Performance Polymers: OrganicInorganic Composites; J.E. Mark. Polymers for Biotechnology: Biocompatible Polymers and Their Applications; N. Ogata. Polymers Blends and Composites: Thermodynamics and Interfaces of Polymer Blends; J. Kressler, T. Inoue. Multifunctional and Intelligent Polymers: Intelligent Polymer Membranes; W.E. Price, et al. Advanced Materials from Natural Polymers: The Study of Composite Reinforced with Natural Fibers; M. Sitepu. Sol-Gel Processed Materials: Sol-Gel Synthesis of Transition Metal Oxopolymers; J. Livage. Polymer Surfaces: New Directions in Organosilicon Surface Science; M.J. Owen. 55 additional articles. Index.
Nanotechnology is the creation of useful materials, devices, and systems through the control of matter on the nanometer-length scale. This takes place at the scale of atoms, molecules, and supramolecular structures. In the worldofchemistry,therationaldesignofmolecularstructuresandoptimized control of self-assembly conditions have enabled us to control the resultant self-assembled morphologies having 1 to 100-nm dimensions with sing- nanometer precision. This current research trend applying the bottom-up approach to molecules remarkably contrasts with the top-down approach in nanotechnology,inwhichelectronicdevicesareminiaturizingtosmallerthan 30nm.However,even engineers workingwithstate-of-the-artcomputer te- nology state that maintaining the rate of improvement based on Moore's law will be the most dif?cult challenge in the next decade. On the other hand, the excellent properties and intelligent functions of a variety of natural materials have inspired polymer and organic chemists to tailortheirsyntheticorganicalternativesbyextractingtheessentialstructural elements. In particular, one-dimensional structures in nature with sophis- catedhierarchy,suchasmyelinated axonsinneurons,tendon,proteintubesof tubulin, and spider webs, provide intriguingexamples of integrated functions and properties. Againstthisbackground,supramolecularself-assemblyofone-dimensional architectures like ?bers and tubes from amphiphilic molecules, bio-related molecules, and properly designed self-assembling polymer molecules has - tractedrapidlygrowinginterest.Theintrinsicpropertiesoforganicmolecules such asthe diversity ofstructures, facile implementation offunctionality,and theaggregationproperty,providein?nite possibilities forthedevelopment of new and interesting advanced materials in the near future. The morpholo- cally variable characteristics of supramolecular assemblies can also function as pre-organized templates to synthesize one-dimensional hybrid nanoc- posites. The obtained one-dimensional organic-inorganic, organic-bio, or organic-metal hybrid materials are potentially applicable to sensor/actuator arrays, nanowires,and opto-electricdevices. ThepresentvolumesonSelf-AssembledNano?bers(Volume219)andNa- tubes(Volume220)provideanoverviewonthoseaspectswithineightchapters.
Because it is critically important to manufacture quality products, a reasonable balance must be drawn between control requirements and parameters for improved processing method with respect to plastics additives. An important contribution to the commercial polymer industry, "Polymer Blends and Composites" is one of the first books to combine plastics additives, testing, and quality control. The book is a comprehensive treatise on properties that provides detailed guidelines for selecting and using blends and composites for applications. A valuable resource for operators, processors, engineers, chemists, the book serves to stimulate those already active in natural polymer composites.
MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC. In 1992 a new calorimetric technique was introduced that superimposed a small modulation on top of the conventional linear temperature program typically used in differential scanning calorimetry. This was combined with a method of data analysis that enabled the samplea (TM)s response to the linear component of the temperature program to be separated from its response to the periodic component. In this way, for the first time, a signal equivalent to that of conventional DSC was obtained simultaneously with a measure of the samplea (TM)s heat capacity from the modulation. The new information this provided sparked a revolution in scanning calorimetry by enabling new insights to be gained into almost all aspects of polymer characteristics. This book provides both a basic and advanced treatment of the theory of the technique followed by a detailed exposition of its application to reacting systems, blends and semicrystalline polymers by the leaders in all of these fields. It is an essential text for anybody interested in calorimetry or polymer characterization, especially if they have found that conventional DSC cannot help them with their problems.
Additives are selected depending on the type of polymers to which they will be added or the application for which they will be used. The appropriate selection of additives helps develop value-added plastics with improved durability as well as other advantages. This research book provides a range of modern techniques and new research on the use of additives in a variety of applications. The methods and instrumentation described represent modern analytical techniques useful to researchers, product development specialists, and quality control experts in polymer synthesis and manufacturing. Engineers, polymer scientists, and technicians will find this volume useful in selecting approaches and techniques applicable to characterizing molecular, compositional, rheological, and thermodynamic properties of elastomers and plastics. The informative chapters are the work of researchers at the Department of Polymers and Composite Materials at the prestigious Semenov Institute of Chemical Physics of Russian Academy of Sciences.
Pressure is one of the essential thermodynamic variables that, due to some former experimental difficulties, was long known as the forgotten variable. But this has changed over the last decade. This book includes the most essential first experiments from the 1960s and reviews the progress made in understanding glass formation with the application of pressure in the last ten years. The systems include amorphous polymers and glass-forming liquids, polypeptides and polymers blends. The thermodynamics of these systems, the relation of the structural relaxation to the chemical specificity, and their present and future potential applications are discussed in detail. The book provides (a) an overview of systems exhibiting glassy behavior in relation to their molecular structure and provides readers with the current state of knowledge on the liquid-to-glass transformation, (b) emphasizes the relation between thermodynamic state and dynamic response and (c) shows that the information on the pressure effects on dynamics can be employed in the design of materials for particular applications. It is meant to serve as an advanced introductory book for scientists and graduate students working or planning to work with dynamics. Several scientific papers dealing with the effects of pressure on dynamics have appeared in leading journals in the fields of physics in the last ten years. The book provides researchers and students new to the field with an overview of the knowledge that has been gained in a coherent and comprehensive way. "
This book presents an exhaustive analysis of the trends in the development and use of natural and synthetic polymer systems aimed at sustainable agricultural production. The polymers have allowed the development of controlled and released systems of agrochemicals such as pesticides, fertilizers and phytohormones through micro and nanoencapsulated systems, which protect and stimulate the growth of crops at low costs and without damage to the environment. Hydrogel systems from natural and synthetic polymers have also had their place in the agricultural industry, since they allow to maintain the humidity conditions of the crops for their correct development in drought times. Mulch films made of polymers have also become important in the control of weeds and pests in crops, as well as the use of edible coatings applied to fruits and vegetables during post-harvest, which reduce the losses of these perishable foods. Currently, the systems indicated, as well as others, are already used on a large scale. However, research studies in this area have been limited compared to other polymer applications. This book collects useful information for researchers, students and technologies related to the polymer technology and agri-food production. In this book, world-renowned researchers have participated, including associate editors of important journals, as well as researchers working in the area of research and development (R&D) of leading agri-food industries in the manufacture of agricultural inputs.
The book introduces fundamental principles, phase structure, mechanism, mechanical properties, and different types of multicomponent polymers. Rheological properties, graft copolymers, block copolymers and interpenetrating polymer networks are discussed in detail as well. With abundant illustrations, it is an essential reference for polymer chemists, material scientists and graduate students.
Mechanochemistry has been recently ackwnoledged by IUPAC as one of the top ten emerging technologies in chemistry, answering to the increased demand for clean processes and sustainable reaction conditions. This book focuses on the rediscovery of mechanochemistry for inorganic, organic and organo-metallic materials. Focus on experimental techniques and equipment will show how to implement mechanochemistry as an innovative way to sustainability in academic laboratories. The contents are ideal for researchers starting off in industry and academia, as well as advanced students.
This book introduces the concepts of physical chemistry of polymers. It provides a basis to bridge polymer chemistry, which targets microscopic chain structures, and polymer engineering, which targets macroscopic material properties and functions. Topics covered are single chain statistics, multi-chain interactions, and chain dynamics, both from a viewpoint of structure, properties (mostly mechanical ones), and their interrelation. In all that, the author encourages the reader to think conceptually.
Polymers are converted into finished products through a series of steps which include mixing in additives and various types of forming. Following an introduction to polymer science and its importance to various fields, the author describes these processes from a practical, application-oriented perspective. Global suppliers of raw materials, machinery and equipment are also given, making this book an invaluable resource for industry practitioners.
This book focuses on different aspects of microplastic pollution, offering authors and readers the opportunity to share their knowledge, identify issues and propose solutions and actions to face this environmental threat. Although plastic pollution is a well-known global problem, the recent discovery of microplastics and nanoplastics in seas and oceans represents a very alarming new environmental challenge. The book offers comprehensive insights into the origins of the problem, its impact on marine environments, particularly the Mediterranean Sea and coasts, and the current research trends aimed at finding technical solutions to mitigate the phenomenon. It is primarily intended for scientists and decision makers from industry, international, national and local institutions and NGOs
This brief explores recent progress in the area of polysaccharides and their composites and nanocomposites. It is a complete resource for the evolving field of polysaccharide based biomaterials and their applications in different fields. The volume focuses on their composition, properties, characterization, chemistry and applications and also highlights recent developments in polysaccharide based composites and nanocomposites spurred by advances in polymer technology and biotechnology. Divided into different sections featuring alginates, carrageenans, cellulose, starch, chitin, chitosan, gums, etc, each chapter presents chemical, physical, and biological attributes, and reviews the recent research performed such as drug carriers, selective water absorption materials from oil-water emulsions, purification of water, biomedical applications, etc. The authors hope that this brief will help to inspire scientists towards novel sources for chemicals, materials, and energy in the years to come.
Partial table of contents: Transport in Conducting Polymers (E. Conwell). Charge Transport in Conducting Polymers (R. Menon). Photochemical Processes of Conductive Polymers (M. Abdou & S. Holdcroft). Photorefractive Polymers (L. Yu, et al.). Electropolymerized Phthalocyanines and Their Applications (T. Guarr). Characterization and Applications of Poly(p-phenylene) and Poly(p-phenylenevinylene) (C. Kvarnström & A. Ivaska). Artificial Muscles, Electrodissolution and Redox Processes in Conducting Polymers (T. Otero). Conducting Polymers for Batteries, Supercapacitors and Optical Devices (C. Arbizzani, et al.). Photoelectric Conversion by Polymeric and Organic Materials (M. Kaneko). Index
This book covers various molecular, metal-organic, dynamic covalent, polymer and other gels, focusing on their driving interactions, structures and properties. It consists of six chapters demonstrating interesting examples of these gels, classified by the type of driving interaction, and also discusses the effect of these interactions on the gels' structures and properties. The book offers an interesting and useful guide for a broad readership in various fields of chemical and materials science.
Group Transfer Polymerization and Its Relationship to Other Living Systems (O.W. Webster). Fundamentals and Practical Aspects of 'Living' Radical Polymerization (K. Matyjaszewski). Living Carbocationic Copolymerizations: Part 1: The Constant Copolymer Composition Technique (III) (A. Nagy et al.). Living Carboncationic Copolymerizations: Part 2: Application of the Constant Copolymer Composition Technique for the Synthesis of Isobutylene/pMethylstyrene Copolymers (I. Orszagh et al.). Hexaarmed Polystyrene Stars from a Newly Designed Initiator of Carbocationic Polymerization (E. Cloutet et al.). Photoionization of Ionic Polymerizations (W. Schnabel). Synthesis and Photopolymerization of 1Propenyl Ether Monomers (J.V. Crivello et al.). Design of Macromolecular Prodrug Forms of Antitumor Agents (T. Ouchi). Transparent Multiphasic Oxygen Permeable Hydrogels Based on Siloxanic Statistical Copolymers (C. Roberts et al.). Preparation of Tubular Polymers from Cyclodextrins (A. Harada et al.). Multicomponent Polymers Containing Polyisobutylene via Multimode Polymerization (M.K. Mishra). 14 additional articles. Index.
This brief explores polysaccharides, the most abundant family of naturally occurring polymers, and explains how they have gained considerable attention in recent decades as a source of innovative bio-based materials. The authors present a range of material including an extensive array of polysaccharide hybrid nanomaterials with distinct applications. The most recent knowledge regarding polysaccharide-based hybrid nanomaterials with metal and metal oxide nanoparticles (NPs), carbon nanotubes and graphene is presented as well as the main polysaccharides, namely cellulose, chitin and chitosan, starch and their most relevant derivatives. The book features a description of important production methodologies, properties, and applications of these types of hybrids.
PEO Unsaturated Macromonomers ................... 21 PEO Saturated Macromonomers ..................... 24 PEO Block and Graft Copolymers .................... 25 Dispersion Polymerization of PEO Macromonomers ......... 27 Copolymerization of PEO Macromonomers with Styrene ...... 27 Copolymerization of PEO Macromonomers with Alkyl Acrylates and Methacrylates .................... 33 Emulsion Polymerization of PEO Macromonomers ......... 34 Homopolymerization of PEO Macromonomers ............ 34 Copolymerization of PEO Macromonomers with Styrene ...... 39 Copolymerization of PEO Macromonomers with Other Comonomers ............................ 45 Polymerization of PEO Macromonomers in Other Disperse Systems .......................... 48 Conclusion ................................. 50 References ................................. 52 List of Abbreviations and Symbols A acrylic group second virial coefficient A2 AA acrylic acid AVA 4,4'-azobis(4-cyanovaleric acide) AIBN 2,2'-azobiisobutyronitrile B A butyl acrylate BzMA benzyl methacrylate BMA butyl methacrylate CAC critical association concentration concentration of monomer in water cw concentration of polymer micelle concentration CMC critical CFC critical flocculation concentration CFT critical flocculation temperature chain length (CL) Radical Polymerization of Polyoxyethylene Macromonomers in Disperse Systems 3 methyl Cl t-butyl tC4 chain transfer constant to stabilizer cs chain transfer to solvent css chain transfer constant for transfer to polymeric stabilizer CSP D particle diameter DLS dynamic light scattering volume median diameter D50 final particle diameter " f DBP dibenzoyl peroxide number average degree of polymerization DPn diffusion coefficient of the radical in water " w overall activation energy EO activation energy for propagation E activation energy for termination E t activation energy for decomposition of initiator Ed EO ethylene oxide unit f initiator efficiency monomer feed composition fw graft available G a graft required G r HLB hydrofile-lipophile balance
The intention of this book is to introduce the reader to the wide range of analytical techniques that are available for characterizing polymeric materials. The emphasis and focus are on the properties of polymers, rather than on the various techniques employed. Although there are a number of texts which discuss polymer analysis, this is the only book currently available which includes extensive use of questions and problems to aid the reader's understanding. The majority of books on this subject are heavily charged with theory, while Polymer Analysis, on the other hand, concentrates very much on the practical aspects. Key features include the following:
Dendrimers have been referred to as "the polymers of the 21st Century." These macromolecules are characterized by "branch upon branch" architecture and are now rapidly expanding the general fields of polymer science and chemistry. Dendritic polymers are the most recently discovered, fourth major architectural class of macromolecules. They represent a fourth major class after traditional types which include (I) linear, (II) cross-linked and (III) branched architectures. Dendrimers and Other Dendritic Polymers provides a detailed insight into dendritic polymers, and discusses all the known subclasses of dendritic polymers in addition to dendrons and dendrimers, including hyperbranched polymers, dendrigrafts and megamers. Dendrimers possess unique structures and exhibit properties that differ dramatically from those of the more traditional polymer types. These features have contributed to multi-disciplinary applications and now many major chemical companies are investing extensively in dendritic polymer research as they are investigating their broad commercial applications. They are currently being developed for use in the pharmaceutical and chemical industries with identified applications in areas as diverse as: drug delivery, cancer therapy, nano-pharmaceuticals, nano-diagnostics, nanolithography, coatings and adhesives, separation technology and catalysis. With contributions from many of the leading scientists in the field of dendritic polymers, this comprehensive volume provides:
This book covers the functionalisation of silicone surfaces with polysaccharides to improve their antimicrobial and antifouling properties, thus reducing the implant-related infections. The authors describe how silicone surfaces were chosen because silicone exhibits excellent biocompatible properties and is already being used for medical implants such as catheters, breast implants, prosthetics etc. The potential of polysaccharides such as cellulose, chitosan, hyaluronic acid, and other natural substances such as natural surfactants as coatings for silicones are also discussed, their effects are evaluated. With the aging of the population, the number of medical implants is growing and with it the number of infections associated with the use of implants.
This brief introduces the classification and mechanism of density gradient ultracentrifugation (DGUC) method with rich examples showing the versatility of such an efficient separation technique. It also gives a strict mathematical description and a computational optimization model to predict the best separation parameters for a given colloidal system. The concept of "Lab in a tube" is proposed in the last chapter, which allows the size-property relationship investigation, synthetic optimization and reaction/assembly mechanism exploration etc.
The brief explains in simple terms the essentials of polymer chemistry and how polymers came to be discovered by pioneers in this field. It relates the many uses of polymers, including those not widely recognised by the lay person. The chemistry of polymerisation and the influence of chemical structure and additives on properties are described. Ethical issues are considered, especially in the context of huge tonnages of plastics. Finally short paragraphs on more than 30 common polymers are listed chronologically with chemical structures, properties and applications. It will appeal to those with connections to or within the plastics, rubber and textile industries, science students, members of other science disciplines using polymers, as well as people just curious to know about everyday plastics. |
You may like...
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
(1)
New Delhi: The Last Imperial City
D Johnson, Richard Watson
Hardcover
|