![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This is the second volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. "Advances in Elastomers" discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This second volume is deals with composites and nanocomposites of elastomers.
This book provides in a concise form the principles and applications of flow microreactors in organic and polymer synthesis. Recently, it became possible to conduct chemical reactions in a flow reactor in laboratory synthesis. The flow microreactor enables reactions that cannot be done in batch, opening a new possibility of chemical synthesis. Extremely fast mass and heat transfer and high-resolution residence time control are responsible for the remarkable features of that process. The book is not an exhaustive compilation of all known examples of flow microreactor synthesis. Rather, it is a sampling of sufficient variety to illustrate the concept, the scope, and the current state of flow microreactor synthesis. Researchers both in academia and in industry will be interested in this book because the topics encompassed by the book are vigorously studied in many university and company laboratories today.
This is the first volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. "Advances in Elastomers" discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This first volume focuses on advances on the blends and interpenetrating networks (IPNs) of elastomers.
Renowned experts give all essential aspects of the techniques and applications of graft copolymers based on polysaccharides. Polysaccharides are the most abundant natural organic materials and polysaccharide based graft copolymers are of great importance and widely used in various fields. Natural polysaccharides have recently received more attention due to their advantages over synthetic polymers by being non-toxic, biodegradable and available at low cost. Modification of polysaccharides through graft copolymerization improves the properties of polysaccharides. Grafting is known to improve the characteristic properties of the backbones. Such properties include water repellency, thermal stability, flame resistance, dye-ability and resistance towards acid-base attack and abrasion. Polysaccharides and their graft copolymers find extensive applications in diversified fields. Applications of modified polysaccharides include drug delivery devices, controlled release of fungicides, selective water absorption from oil-water emulsions, purification of water etc.
The use of conventional nuclear magnetic resonance is limited by the fact that the object needs to be carried to the NMR equipment and needs to fit inside large superconducting magnets. Both limitations are removed by single-sided NMR probes based on open magnets specially adapted to the object under study. These can be inexpensive and portable sensors that give access to a large number of applications inaccessible with using conventional magnet geometries. Substantial improvements in the magnet design, detection electronics, and the implementation of suitable techniques to work in the inhomogeneous magnetic fields of open magnets have allowed scientists and engineers to measure relaxation-time distributions, diffusion coefficients, 3D images, velocity distributions, and even highly resolved NMR spectra in the stray field of the magnet. This book is the first comprehensive account describing the key issues to be considered at the time of designing and building open magnets, and summarizing the arsenal of pulse sequences available today for material analysis.
This book shows the various porous structures and supramolecular architectures that result from the cucurbituril-based coordination, hydrogen bonding, ion-dipole interactions, stacking and C-H processes. It includes two chapters presenting essential examples of these cucurbituril-based structures, depending on the types of non covalent interactions and inducer species. It also includes one chapter dealing with the utilization of cucurbiturils as a molecular container in supramolecular chemistry and demonstrating a wide range of potential applications of supramolecular assemblies with cucurbiturils in catalysis, separation, absorption and polymer materials. The book offers an interesting and valuable guide for readers working in the areas of supramolecular chemistry and materials.
This book is part of a series dedicated to recent advances on preventive, predictive and personalised medicine (PPPM). It focuses on the theme of "Drug delivery systems: advanced technologies potentially applicable in personalised treatments". The critical topics involving the development and preparation of effective drug delivery systems, such as: polymers available, self-assembly, nanotechnology, pharmaceutical formulations, three dimensional structures, molecular modeling, tailor-made solutions and technological tendencies, are carefully discussed. The understanding of these areas constitutes a paramount route to establish personalised and effective solutions for specific diseases and individuals.
Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.
Supramolecular Polymers, Second Edition details assembly processes and structure-function correlation in natural and synthetic self-assembling materials, focusing on developments occurred over the past five years. The book highlights developments in the synthesis of complex structures, chemical design principles, and theoretical models of growth processes resulting in an increasingly accurate prediction of stability, degree of polymerization, and shape of various assemblies. It focuses on the rich variety of properties, functions, and applications of self-assembling supramolecular polymers. Supramolecular Polymers, Second Edition ties together potential applications such as those of nanostructures with dynamic-combinatorial-adaptive self-healing features, opto-electronic devices, supramolecular amphiphiles, hydrogels, organic/inorganic nanocomposites, molecular biosensors, molecular imprinting, molecular engines, templates for superlattices with prescribed symmetry. Several chapters of the first edition have been updated or rewritten, and an equal number of new chapters have been added. More than 500 drawings, photographs, micrographs, equations, and tables enhance and reinforce essential concepts presented in the book. Authored by an expert in polymer mechanics, biopolymers, liquid crystals, and supramolecular assemblies, Supramolecular Polymers, Second Edition emphasizes fundamental principles at the basis of bottom-up nanotechnology, chemical design strategies, and exciting applications for various self-assembling materials for a unified and cutting-edge account of the field.
Iptycenes Chemistry: From Synthesis to Applications provides a comprehensive overview of the development of iptycene chemistry in the past seventy years. This book covers: (1) the basic nomenclature and general properties of iptycenes and their derivatives; (2) the synthesis and functionalization reactions of triptycenes, pentiptycenes, higher iptycenes, heterotriptycenes, and homotriptycenes; (3) the methods for the preparation of iptycene-based polymers with different types; and (4) the applications of iptycenes and their derivatives in molecular machines, materials science, host-guest chemistry, self-assembly, coordination chemistry, physical organic chemistry, medicinal chemistry, and so on. Consequently, such a book is not only helpful to researchers working in iptycene chemistry, but can also facilitate future research in wide areas.
A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.
Mobility Gradient of Polystyrene in Films Supported on Solid Substrates, by Yoshihisa Fujii, Hiroshi Morita, Atsushi Takahara and Keiji Tanaka Probing Properties of Polymers in Thin Films Via Dewetting, by Gunter Reiter Heterogeneous and Aging Dynamics in Single and Stacked Thin Polymer Films, by Koji Fukao, Takehide Terasawa, Kenji Nakamura, Daisuke Tahara Heterogeneous Dynamics of Polymer Thin Films as Studied by Neutron Scattering, by Rintaro Inoue and Toshiji Kanaya
Polypeptide-Polymer Conjugates, by Henning Menzel Chemical Strategies for the Synthesis of Protein-Polymer Conjugates, by Bjoern Jung and Patrick Theato Glycopolymer Conjugates, by Ahmed M. Eissa and Neil R. Cameron DNA-Polymer Conjugates: From Synthesis, Through Complex Formation and Self-assembly to Applications, by Dawid Kedracki, Ilyes Safir, Nidhi Gour, Kien Xuan Ngo and Corinne Vebert-Nardin Synthesis of Terpene-Based Polymers, by Junpeng Zhao and Helmut Schlaad
This brief describes the development of a new model for realistically characterizing solution-diffusion transport mechanisms in polymeric membranes that are used for separation and purification of organic solvents. Polymeric membranes used in these environments, if not selected appropriately, undergo excessive swelling and compaction resulting in lowered performance or membrane destruction in the long-term. This brief describes the relationship between key parameters from a chemical, mechanical and thermodynamic perspective. Moreover, the authors show how this new model points membrane manufacturers, scientists, and engineers towards an understanding of how these key parameters are considered in (1) designing and manufacturing membranes for the right application, (2) designing the right test experiments to determine the long-term membrane behavior in a short time, (3) minimizing the number of experiments to determine a reliable membrane for an application and (4) selecting the right membrane with higher level of certainty. The overall benefits of the model includes saving money and time. A simplified version of the model is included to assist the reader.
This is a book for people who love mechanics of composite materials and ? MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing the numerical calculations needed in mechanics of c- posite materials. In particular, the steps of the mechanical calculations will be emphasized in this book. The reader will not ?nd ready-made MATLAB programs for use as black boxes. Instead step-by-step solutions of composite material mechanics problems are examined in detail using MATLAB. All the problems in the book assume linear elastic behavior in structural mechanics. The emphasis is not on mass computations or programming, but rather on learning the composite material mechanics computations and understanding of the underlying concepts. The basic aspects of the mechanics of ?ber-reinforced composite materials are covered in this book. This includes lamina analysis in both the local and global coordinate systems, laminate analysis, and failure theories of a lamina.
1 V.O. Aseyev, H. Tenhu, F. Winnik: Temperature Dependence of the Colloidal Stability of Neutral Amphiphilic Polymers in Water.- 2 V.I. Lozinsky: Approaches to Chemical Synthesis of Protein-Like Copolymers.- 3 S.I. Kuchanov, A.R. Khokhlov: Role of Physical Factors in the Processes of Obtaining of Copolymers.- 4 A.Y. Grosberg, A.R. Khokhlov: After-Action of the Ideas of I.M. Lifshitz in Polymer and Biopolymer Physics.-
The effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour is continued from the past meetings.
Long-Term Durability of Polymeric Matrix Composites presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.
1 D. Schwahn: Critical to Mean Field Crossover in Polymer Blends.- 2 K.F. Freed, J. Dudowicz: Influence of Monomer Molecular Structure on the Miscibility of Polymer Blends.- 3 N. Clarke: Effect of Shear Flow on Polymer Blends.-
The text features experimental investigations which use a variety of modern methods and theoretical modeling of surface structures and physicochemical processes which occur at solid surfaces. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications is intended for specialists experienced in the fields of Nanochemistry, Nanophysics, Surface Chemistry (and Physics), synthesis of new nanostructural functional materials and their practical applications. It will also prove useful to students, post-graduates, researchers, and lecturers.
This thesis focuses on porous monolithic materials that are not in the forms of particles, fibers, or films. In particular, the synthetic strategy of porous monolithic materials via the sol-gel method accompanied by phase separation, which is characterized as the non-templating method for tailoring well-defined macropores, is described from the basics to actual synthesis. Porous materials are attracting more and more attention in various fields such as electronics, energy storage, catalysis, sensing, adsorbents, biomedical science, and separation science. To date, many efforts have been made to synthesize porous materials in various chemical compositions-organics, inorganics including metals, glasses and ceramics, and organic-inorganic hybrids. Also demonstrated in this thesis are the potential applications of synthesized porous monolithic materials to separation media as well as to electrodes for electric double-layer capacitors (EDLCs) and Li-ion batteries (LIBs). This work is ideal for graduate students in materials science and is also useful to engineers or scientists seeking basic knowledge of porous monolithic materials.
I used the opportunity of this edition to correct some minor mistakes and clarify, wherever it possible, exposition of the theory in comparison with the previous edition of this book (Kluwer, Dordrechtet cet, 2000). It provokes - largement of the book, though I tried to present the modern theory of thermic motion of long macromolecules in compact form. I have tried to accumulate the common heritage and to take into account di?erent approaches in the theory of dynamics of linear polymers, at least, to understand and make clear the importance of various ideas for explanation of relaxation phenomena in linear polymers, to present recent development in the ?eld. The theory of non-equilibrium phenomena in polymer systems is based on the fundamental principles of statistical physics. However, the peculiarities of thestructureandthebehaviourofthesystemsnecessitatetheimplementation of special methods and heuristic models that are di?erent from those for gases and solids, so that polymer dynamics has appeared to be a special branch of physicsnow. Themonographcontainsdiscussionsofthemainprinciplesofthe theoryof slowrelaxationphenomena in linearpolymers, elaborated inthe last decades. The basic model of a macromolecule, which allows us a consistent explanation of di?erent relaxation phenomena (di?usion, neutron scattering, viscoelasticity, optical birefringence), remains to be a coarse-grained or be- spring model, considered in di?erent environments: viscous, to describe the behaviourofdilutesolutions,orviscoelastic,todescribethebehaviourofboth weakly and strongly entangled systems.
This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
"Polymeric and Nanostructured Macromolecules" presents the recent advances made in the synthesis, characterization, and applications of polymeric macromolecules. This book provides an excellent overview of the recent breakthroughs in the science of macromolecules, with an emphasis on nanostructured macromolecules and the perspectives that these versatile materials offer to different fields such as optoelectronics and biotechnology. Advanced undergraduate, graduate students and researchers alike will find the topics concerning physical and chemical properties of advanced macromolecular materials of great interest.
Technology and Development of Self-Reinforced Polymer Composites, by Ben Alcock und Ton Peijs; Recent Advances in High-Temperature Fractionation of Polyolefins, by Harald Pasch, Muhammad Imran Malik und Tibor Macko ; Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides, by Karen Lienkamp, Ahmad E. Madkour und Gregory N. Tew; Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective, by Molamma P. Prabhakaran; |
![]() ![]() You may like...
Cannabis sativa Cultivation, Production…
Rafiq Lone, Aabid Hussain Mir, …
Hardcover
R7,084
Discovery Miles 70 840
Anesthesiology and the Cardiovascular…
T.H. Stanley, P.L. Bailey
Hardcover
R6,054
Discovery Miles 60 540
Classy glass art - Contemporary stained…
Gail Brown, Jacqui Holmes
Paperback
|