Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.
This monograph is a follow-up material to the first FRRPP book by Gerard Caneba in 2009. It includes additional conceptual results, implementation of the FRRPP process in emulsion media to produce various block copolymers, and other FRRPP-related supplementary topics. Conceptual topics include the application of the quantitative analysis presented in the first FRRPP monograph for the occurrence of the FRRPP process to the polysterene-styrene-ether (PS-S-Ether) and poly(methacrylic acid)-methacrylic acid-water (PMAA-MAA-Water) systems, as well as extensions through unsteady state analysis of the occurrence of flat temperature profiles. Also, the generalization of the quantitative analysis is done to consider molecular weight effects, especially based on changes of the phase envelope to an hourglass type. Topics in implementation of the FRRPP process from pre-emulsions of monomers and the solvent/precipitant are highlighted. Additional FRRPP topics are included in this monograph that pertain to more recent efforts of Gerard Caneba, such as oil spill control, oil dispersant system, and caustic sludge remediation from emulsion-based FRRPP materials, hydrolysis of vinyl acetate-acrylic acid-based copolymers, and other polymer modification studies from FRRPP-based emulsions.
The free-radical retrograde-precipitation polymerization (FRRPP) process was introduced by the author in the early 1990s as a chain polymerization method, whereby phase separation is occurring while reactive sites are above the lower cr- ical solution temperature (LCST). It was evident that certain regions of the product polymer attain temperatures above the average ?uid temperature, sometimes rea- ing carbonization temperatures. During the early stages of polymerization-induced phase separation, nanoscale polymer domains were also found to be persistent in the reacting system, in apparent contradiction with results of microstructural coarsening from constant-temperature modeling and experimental studies. This mass con?- ment behavior was used for micropatterning, for entrapment of reactive radical sites, and for the formation of block copolymers that can be used as intermediates, surf- tants, coatings, coupling agents, foams, and hydrogels. FRRPP-based materials and its mechanism have also been proposed to be relevant in energy and environmentally responsible applications. This technology lacks intellectual appeal compared to others that have been p- posed to produce polymers of exotic architectures. There are no special chemical mediators needed. Control of conditions and product distribution is done by p- cess means, based on a robust and ?exible free-radical-based chemistry. Thus, it can readily be implemented in the laboratory and in production scale.
This book covers fundamental principles and numerical methods relevant to the modeling of the injection molding process. As injection molding processing is related to rheology, mechanical and chemical engineering, polymer science and computational methods, and is a rapidly growing field, the book provides a multidisciplinary and comprehensive introduction to the subjects required for an understanding of the complex process. It addresses the up-to-date status of fundamental understanding and simulation technologies, without losing sight of still useful classical approaches. The main chapters of the book are devoted to the currently active fields of flow-induced crystallization and orientation evolution of fiber suspensions, respectively, followed by detailed discussion of their effects on mechanical property, shrinkage and warpage of injection-molded products. The level of the proposed book will be suitable for interested scientists, R&D engineers, application engineers, and graduate students in engineering.
Chemical sensors are in high demand for applications as varied as water pollution detection, medical diagnostics, and battlefield air analysis. Designing the next generation of sensors requires an interdisciplinary approach. The book provides a critical analysis of new opportunities in sensor materials research that have been opened up with the use of combinatorial and high-throughput technologies, with emphasis on experimental techniques. For a view of component selection with a more computational perspective, readers may refer to the complementary volume of Integrated Analytical Systems edited by M. Ryan et al., entitled "Computational Methods for Sensor Material Selection".
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.
Non-Newtonian properties on bubble dynamics and cavitation are fundamentally different from those of Newtonian fluids. The most significant effect arises from the dramatic increase in viscosity of polymer solutions in an extensional flow, such as that generated about a spherical bubble during its growth or collapse phase. In addition, many biological fluids, such as blood, synovial fluid, and saliva, have non-Newtonian properties and can display significant viscoelastic behaviour. This monograph elucidates general aspects of bubble dynamics and cavitation in non-Newtonian fluids and applies them to the fields of biomedicine and bioengineering. In addition it presents many examples from the process industries. The field is strongly interdisciplinary and the numerous disciplines involve have and will continue to overlook and reinvent each others' work. This book helps researchers to think intuitively about the diverse physics of these systems, to attempt to bridge the various communities involved, and to convey the interest, elegance, and variety of physical phenomena that manifest themselves on the micrometer and microsecond scales.
Living systems synthesize seven different classes of polymers. They provide structure and form for cells and organisms, function as catalysts and energy storage and carry the genetic information. All these polymers possess technically interesting properties. Some of these biopolymers are already used commercially. This special volume of Advances in Biochemical Engineering/Biotechnology comprises 10 chapters. It gives an overview of the water insoluble biopolyesters, in particular of the microbially synthesized poly-hydroxyalkanoate (PHA) family. It reports the state of the art of metabolism, regulation and genetic background, the latest advances made in genetic optimization of bacteria, "construction" of transgenic plants and in vitro synthesis by means of purified enzymes. Furthermore, it describes relevant technologies and evaluates perspectives concerning increasing the economic viability and competitiveness of PHA and discusses applications in medicine, packaging, food and other fields.
The contributors to this volume study macroscopic flow properties and molecular mobility in complex liquids with high internal mobility and a highly anisotropic molecular shape. Particular attention is paid to the wide variety of experimental approaches, in theory as well as in computer simulation of these difficult but very important problems. The contributions are of interest to researchers in physics as well as in engineering and chemistry.
This monograph gives a detailed introductory exposition of research results for various models, mostly two-dimensional, of directed walks, interfaces, wetting, surface adsorption (of polymers), stacks, compact clusters (lattice animals), etc. The unifying feature of these models is that in most cases they can be solved analytically. The methods used include transfer matrices, generating functions, recurrence relations, and difference equations, and in some cases involve utilization of less familiar mathematical techniques such as continued fractions and q-series. The authors emphasize an overall view of what can be learned generally of the statistical mechanics of anisotropic systems, including phenomena near surfaces, by studying the solvable models. Thus, the concept of scaling and, where known, finite-size scaling properties are elucidated. Scaling and statistical mechanics of anisoptropic systems in general are active research topics. The volume provides a comprehensive survey of exact model results in this field.
The last twenty years or so have seen a flurry of activity in the synthesis of new polymer systems. This interest has developed largely as a result of the increased need for advanced materials. Despite the emergence of a number of outstanding polymers, it is the polyimides that have captured the imagination of scientists and engineers alike as materials that offer outstanding promise for the high technology applic ations of the future. The reputation of the polyimide has been established on the bases of outstanding thermal stability, excellent mechanical properties and the ability to be fabricated into useful articles. Polyimides offer a versatility unparalleled in most other classes of macromolecules. Polymers can be prepared from a variety of starting materials, by a variety of synthetic routes. They can be tailor-made to suit specific applications. By judicious choice of starting materials, polymers can be made that offer variations in such properties as glass transition tempera ture, oxidative stability, toughness, adhesion, and permeability. It is this versatility that has led to the use of polyimides in a wide variety of applications. The electronics industry makes extensive use of poly imide films in, ior example, semiconductor applications. The leading polymer matrices for high temperature advanced composites are polyimides. High temperature adhesive systems for the bonding of metals or composites are often based on polyimides. In addition, polyimides are now finding use as fibres, foams, sealents and even membranes for the low energy separation of industrial gases.
Das Buch enthalt Kapitel uber: N. Kinjo, M. Ogata, Ibaraki-ken; K. Nishi, Tokyo; A. Kaneda, Yokohama, Japan: Epoxyd-Formmassen als Einschlussmaterialien fur mikroelektronische Gerate Yu.S. Lipatov, T.E. Lipatova, L.F. Kosyanchuk, Kiev, UdSSR: Synthese und Struktur struktureller Makromolekule K. Horie, I. Mita, Tokyo, Japan: Reaktionen und Photodynamik in polymeren Festkorpern Yu.K. Godovsky, V.S. Papkov, Moskau, UdSSR: Thermotrope Mesophasen elementorganischer Polymere
An original, comprehensive survey on the complex relationship between plastics and the environment Plastics offer a variety of environmental benefits. However, their production, applications, and disposal present many environmental concerns. Plastics and the Environment provides state-of-the-art technical and research information on the complex relationship between the plastic and polymer industry and the environment, focusing on the sustainability, environmental impact, and cost—benefit tradeoffs associated with different technologies. Bringing together the field’s leading researchers, Anthony Andrady’s innovative collection not only covers how plastics affect the environment, but also how environmental factors affect plastics. The relative benefits of recycling, resource recovery, and energy recovery are also discussed in detail. The first of the book’s four sections represents a basic introduction to the key subject matter of plastics and the environment; the second explores several pertinent applications of plastics with environmental implications–packaging, paints and coatings, textiles, and agricultural film use. The third section discusses the behavior of plastics in some of the environments in which they are typically used, such as the outdoors, in biotic environments, or in fires. The final section consists of chapters on recycling and thermal treatment of plastics waste. Chapters include:
The contributors also focus on the effectiveness of recent technologies in mitigating environmental impacts, particularly those for managing plastics in the solid waste stream. Plastic and design engineers, polymer chemists, material scientists, and ecologists will find Plastics and the Environment to be a vital resource to this critical industry.
Preparation of Liquid Crystalline Elastomers, by F. Broemmel, D. Kramer, H. Finkelmann Applications of Liquid Crystalline Elastomers, by C. Ohm, M. Brehmer und R. Zentel Liquid Crystal Elastomers and Light, by Peter Palffy-Muhoray Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, by Kenji Urayama The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers, by Andrija Lebar, George Cordoyiannis, Zdravko Kutnjak und Bostjan Zalar Order and Disorder in Liquid-Crystalline Elastomers, by Wim H. de Jeu und Boris I. Ostrovskii
This thesis presents a novel coarse-grained model of DNA, in which bases are represented as rigid nucleotides. The model is shown to quantitatively reproduce many phenomena, including elastic properties of the double-stranded state, hairpin formation in single strands and hybridization of pairs of strands to form duplexes, the first time such a wide range of properties has been captured by a coarse-grained model. The scope and potential of the model is demonstrated by simulating DNA tweezers, an iconic nanodevice, and a two-footed DNA walker - the first time that coarse-grained modelling has been applied to dynamic DNA nanotechnology.
New Antisense Strategies: Chemical Synthesis of RNA Oligomers, by Junichi Yano und Gerald E. Smyth Development and Modification of Decoy Oligodeoxynucleotides for Clinical Application, by Mariana Kiomy Osako, Hironori Nakagami und Ryuichi Morishita Modulation of Endosomal Toll-Like Receptor-Mediated Immune Responses by Synthetic Oligonucleotides, by Ekambar R. Kandimalla und Sudhir Agrawal Delivery of Nucleic Acid Drugs, by Yan Lee und Kazunori Kataoka Aptamer: Biology to Applications, by Yoshikazu Nakamura Development and Clinical Applications of Nucleic Acid Therapeutics, by Veenu Aishwarya, Anna Kalota und Alan M. Gewirtz
This important work is based on the editors' symposium at the 2005 ACS meeting in Washington, DC. The contents include an emphasis on main-group polymers, including boron. The chapters are not simply journal articles, but have real added value as the editors have reviewed the general area by placing the work into a larger perspective. This book will be required reading for scientists in a number of disciplines including chemical engineers and physics researchers. |
You may like...
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
Epoxy-Based Composites
Samson Jerold Samuel Chelladurai, Ramesh Arthanari, …
Hardcover
Cellulose Solvents: For Analysis…
Tim Liebert, Thomas Heinze, …
Hardcover
R6,685
Discovery Miles 66 850
Polymer Chemistry - International…
Timothy P. Lodge, Paul C. Hiemenz
Paperback
R1,282
Discovery Miles 12 820
Starch - Evolution and Recent Advances
Martins Ochubiojo Emeje
Hardcover
Controlled/Living Radical Polymerization
Krzysztof Matyjaszewski
Hardcover
R2,958
Discovery Miles 29 580
Progress in Controlled Radical…
Krzysztof Matyjaszewski, Brent Sumerlin, …
Hardcover
R5,779
Discovery Miles 57 790
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,085
Discovery Miles 30 850
Hydrogels - Smart Materials for…
Lacramioara Popa, Mihaela Violeta Ghica, …
Hardcover
Materials, Chemicals and Energy from…
Dimitris S. Argyropoulos
Hardcover
R6,974
Discovery Miles 69 740
|