![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
Polymer composites represent materials of great and of continuously growing importance. Their potential for application appears to be limitless. They have been the subject of numerous studies both at academic and industrial levels. Much progress has been made in the incisive formulation of composites; sophisticated methods of property evaluation have been developed in the past decade and many, largely empirical solutions have been proposed to resolve the problem of their long-term performance under typical conditions of use (i. e. the use of silane or titane coupling agents to enhance adhesion within composite materials). Assuredly one of the most essential factors in the performance of these systems is the condition of the interface and interphase among the constituents of a given system. It has become clear that it is the interface/interphase, and the interactions which take place in this part of a system, which determine to a significant degree the initial properties of the material. In order to achieve leadership in the formulation and application of polymer composites, it is evident that in depth understanding of interfacial and interphase phenomena becomes a prerequisite.
Organized on a product category basis, this volume provides an up-to-date review of the cosmetics and toiletries industry in a readily digestible form. Authors discuss the rationale of raw materials selection, the formulation and development of products that meet the demands of an international market place, product performances, and safety and quality aspects.
Covering current advances in the science and technology of polymeric and organic materials, each chapter is a self-contained review of progress, and particular emphasis has been placed on obtaining an overall understanding of the state of the art in each area. This is the first book to provide a background perspective on this field of research, and is suitable for both professional researchers and postgraduate students.
The state-of-the-art in contemporary theoretical chemistry is presented in this 4-volume set with numerous contributions from the most highly regarded experts in their field. It provides a concise introduction and critical evaluation of theoretical approaches in relation to experimental evidence.
The development of new high-tech applications and devices has created a seemingly insatiable demand for novel functional materials with enhanced and tailored properties. Such materials can be achieved by three-dimensional structuring on the nanoscale, giving rise to a significant enhancement of particular functional characteristics which stems from the ability to access both surface/interface and bulk properties. The highly ordered, bicontinuous double-gyroid morphology is a fascinating and particularly suitable 3D nanostructure for this purpose due to its highly accessible surface area, connectivity, narrow pore diameter distribution and superb structural stability. The presented study encompasses a wide range of modern nanotechnology techniques in a highly versatile bottom-up nanopatterning strategy that splits the fabrication process into two successive steps: the preparation of mesoporous double-gyroid templates utilizing diblock copolymer self-assembly, and their replication with a functional material employing electrochemical deposition and atomic layer deposition. The double-gyroid structured materials discussed include metals, metal oxides, and conjugated polymers, which are applied and characterized in high-performance devices, such as electrochromic displays, supercapacitors, chemical sensors and photovoltaics. This publication addresses a wide range of readers, from researchers and specialists who are professionally active in the field, to more general readers interested in chemistry, nanoscience and physics.
The purpose of this book will be to demonstrate 1) the newly developed method of using reactive functionalized materials in agriculture to solve the economic and public health problems associated with using conventional agrochemicals; and 2) new technology aimed at achieving the greening of chemistry to meet appropriate environmental standards in both agriculture and industrial foodstuffs production. More specifically, the book will accomplish this goal by addressing 3 key issues in the field: 1) the production of reactive functionalized materials with enhanced properties that offer a major opportunity to overcome the disadvantages of using traditional materials; 2) the applications of functionalized materials in agriculture for the purpose of solving the economic and the environmental pollution problems associated with the uses of conventional agrochemicals; and 3) the contribution of polymers in solving problems associated with conventional procedures of food growth and processing, including those used in the dairy industry, sugar and fruit juices, beer and wine production, nutritive and nonnutritive food additives, and in food protection.
Few scientific developments in recent years have captured the popular imagination like the subject of'biodegradable' plastics. The reasons for this are complex and lie deep in the human subconscious. Discarded plastics are an intrusion on the sea shore and in the countryside. The fact that nature's litter abounds in the sea and on land is acceptable because it is biodegradable - even though it may take many years to be bioassimilated into the ecosystem. Plastics litter is not seen to be biodegradable and is aesthetically unacceptable because it does not blend into the natural environment. To the environmentally aware but often scientifically naive, biodegradation is seen to be the ecologically acceptable solution to the problem of plastic packaging waste and litter and some packaging manufacturers have exploited the 'green' consumer with exaggerated claims to 'environmentally friendly' biodegradable packaging materials. The principles underlying environmental degradation are not understood even by some manufacturers of 'biodegradable' materials and the claims made for them have been categorized as 'deceptive' by USA legislative authorities. This has set back the acceptance of plastics with controlled biodegradability as part of the overall waste and litter control strategy. At the opposite end of the commercial spectrum, the polymer manufactur ing industries, through their trade associations, have been at pains to discount the role of degradable materials in waste and litter management. This negative campaign has concentrated on the supposed incompatibility of degradable plastics with aspects of waste management strategy, notably materials recycling."
This book is a collection of selected papers presented at the symposium titled "In situ Spectroscopy in Monomer and Polymer Synthesis," held at the April, 2001 ACS National Meeting in San Diego, California, USA. The co-organizers of this symposium were Timothy Long, Judit E. Puskas, Robson F. Storey, and J. Andrews. In situ spectroscopic monitoring is gaining popularity both in academia and industry. FfIR monitoring is used most frequently, but UV-visible, raman, and NMR spectroscopy are also important. This book concentrates mostly on FfIR monitoring, both in the near and mid-infrared ranges. The first chapter is a short general overview of FfIR spectroscopy, followed by the symposium contribu tions. We thought that this would be especially useful for student readers. We hope that the book will present a state-of-the-art overview of research related to in situ spectroscopic monitoring. -Judit E. Puskas ix Acknowledgments This book would not have been possible without the dedicated effort of the chapter contributors and the symposium committee: Professor Judit E. Puskas Professor Timothy Long Professor Robson F. Storey Professor J. Andrews The symposium was financially supported by: ACS-Petroleum Research Fund REMSPEC Co. Wyatt Technology Co.
P. S. HOPE and M. J. FOLKES Mixing two or more polymers together to produce blends or alloys is a well-established strategy for achieving a specified portfolio of physical proper ties, without the need to synthesise specialised polymer systems. The subject is vast and has been the focus of much work, both theoretical and experimental. Much ofthe earlier work in this field was necessarily empirical and many ofthe blends produced were of academic rather than commercial interest. The manner in which two (or more) polymers are compounded together is of vital importance in controlling the properties of blends. Moreover, particular ly through detailed rheological studies, it is becoming apparent that process ing can provide a wide range of blend microstructures. In an extreme, this is exemplified by the in situ formation of fibres resulting from the imposition of predetermined flow fields on blends, when in the solution or melt state. The microstructures produced in this case transform the blend into a true fibre composite; this parallels earlier work on the deformation of metal alloys. This type of processing-structure-property correlation opens up many new possi bilities for innovative applications; for example, the production of stiff fibre composites and blends having anisotropic transport properties, such as novel membranes. This book serves a dual purpose."
During the last two decades, the production of polymers and plastics has been increasing rapidly. In spite of developing new polymers and polymeric materials, only 40 60 are used commercially on a large scale. It has been estimated that half of the annual production of polymers is employed outdoors. The photochemical instability of most polymers limits their outdoor application as they are photodegraded quickly over periods from months to a few years. To the despair of technologists and consumers alike, photodegradation and environmental ageing of polymers occur much faster than can be expected from knowledge collected in laboratories. In order to improve polymer photostability there has been a very big effort during the last 30 years to understand the mechanisms involved in photodegradation and environmental ageing. This book represents the author's attempt, based on his 25 years' experience in research on photodegradation and photo stabilization, to collect and generalize a number of available data on the photodegradation of polymers. The space limitation and the tremendous number of publications in the past two decades have made a detailed presentation of all important results and data difficult. The author apologizes to those whose work has not been quoted or widely presented in this book. Because many published results are very often contradictory, it has been difficult to present a fully critical review of collected knowledge, without antagonizing authors. For that reason, all available theories, mechanisms and different suggestions have been presented together, and only practice can evaluate which of them are valid.
The present book is devoted to a rapidly developing field of science which studies the behavior of viscoelastic materials under the influence of deformation~the rheology of polymers. Rheology has long been treated as the theoretical foundation of polymer processing, and from this standpoint it is difficult to overesti mate its importance in practice. Rheology plays an important role in developing our ideas on the nature of viscoelastic behavior in connection with the structural features of polymers and composites based on them. This expands the possibilities of employing rheological methods to characterize a variety of materials and greatly magnifies the interest in this field of research. The rheological properties of polymer systems are studied experimen tally, chiefly under conditions of shear and tensile strains. One explana tion is that many aspects of polymer material processing are associated with the stretching of melts or a combination of shear and tensile strains. In scientific investigations, either periodic or continuous conditions of shear deformation are employed. Each mode provides widespread infor mation. In periodic deformation, most attention is generally given to conditions with low deformation amplitudes that do not alter the structure of the polymer system during an experiment (the region of linear deformation conditions). Here the viscoelastic parameters are generally determined with respect to the frequency. Continuous deforma tion involves considerable strains, and may be attended by significant reversible and irreversible changes in the structure of a polymer.
Synthetic and semi-synthetic polymeric materials were originally developed for their durability and resistance to all forms of degradation including biodegradation. Such materials are currently widely accepted because of their ease of processability and amenability to provide a large variety of cost effective items that help to enhance the comfort and quality of life in the modern industrial society. However, this widespread utilization of plastics has contributed to a serious plastic waste burden, and the expectation for the 21st century is for an increased demand for polymeric material. This volume focuses on a more rational utilization of resources in the fabrication, consumption and disposal of plastic items, specifically: -Environmentally Degradable Polymeric Materials (EDPs); -Water-soluble/Swellable Biodegradable Polymers; -EDPs from Renewable Resources; -Biopolymers; -Bioresorbable Materials for Biomedical Applications; -Biorelated Polymers; -Standards and Regulations on EDPs.
Polymers are ubiquitous and pervasive in industry, science, and technology. These giant molecules have great significance not only in terms of products such as plastics, films, elastomers, fibers, adhesives, and coatings but also less ob viously though none the less importantly in many leading industries (aerospace, electronics, automotive, biomedical, etc.). Well over half the chemists and chem ical engineers who graduate in the United States will at some time work in the polymer industries. If the professionals working with polymers in the other in dustries are taken into account, the overall number swells to a much greater total. It is obvious that knowledge and understanding of polymers is essential for any engineer or scientist whose professional activities involve them with these macromolecules. Not too long ago, formal education relating to polymers was very limited, indeed, almost nonexistent. Speaking from a personal viewpoint, I can recall my first job after completing my Ph.D. The job with E.I. Du Pont de Nemours dealt with polymers, an area in which I had no university training. There were no courses in polymers offered at my alma mater. My experience, incidentally, was the rule and not the exception."
Polymers continue to show almost amazing versatility. We have always known that polymers could be used for trinkets, toys and dishes. Now, however, we are no longer surprised to encounter these adaptable mate rials in almost every place we look. We find them in our cars, tools, electronic devices, building materials, etc. The use of polymeric mate rials in medicine is also well documented in previous books by one of the Editors (Gebelein) and by others. Likewise, the use of polymeric mate rials in pharmaceutical applications, especially in controlled release systems, is also well established. Nevertheless, the use of these ubiquitous chemicals is far less ob vious in the field of cosmetics, although modern cosmetic preparations rely heavily on polymers and this trend is certain to increase. This book brings together much of the basic information on polymers in cosmetics and compares this usage with similar applications in pharmaceutical and medical applications. Cosmetics, like medicine and pharmacy, dates back to antiquity. We can find uses of perfumes, balms and ointments in various old books, such as the Bible. For example, the use of ointments and balms is noted more than thirty eight times, and perfumes and related materials are cited at least twenty nine times in the Bible."
This volume had its birth from a symposium organized by the Macromolecular Secretariat of the American Chemical Society in Atlanta, GA, 1991. Since Macromolecular SeCretariat has five participating divisions-Polymer Chemistry; Polymer Materials: Science and Engineering Division; Colloid and Surface Chemistry Division; Cellulose, Paper and Textile Division; and Rubber Division-the speakers were invited from these disciplinaries and they are truly interdisciplinary in multidisciplinary areas. A number of papers are from the presentations at this symposium. However, some papers were subsequently invited to be sent in. Therefore, many papers have cited references with dates as late as this current year. This book emphasizes applications, and some of the papers were finished in 1993. Therefore, it is timely for scientists and engineers interested in this area of progress. For scientists and engineers who are not familiar with this field, since the development is still youthful, this volume will cover some new frontiers, such as electronics, medical devices, fossil fuels, asphaltics, geochemistry, and environmental engineering. With that in mind, this book can be very useful as a reference. We do include a number of review papers . in this volume. In summary, this book contains sixteen chapters with twenty-eight authors from various organizations and specialties."
In Uses of Immobilized Biological Compounds the reader will find a comprehensive survey of the field written by acknowledged experts who met in Brixen, Italy, between May 9 and 14, 1993 for a NATO Advanced Research Workshop devoted to the topic. The resulting volume presents a critical review of the latest results in the area and sets guidelines for future research. The 53 reports presented here cover: (A) General Aspects of Immobilizing Biological Compounds; (B) Medical, Clinical and Pharmaceutical Applications; (C) Electrochemical Biosensors; (E) Defense Applications; (F) Immunosensors and Receptors; (G) Food, Environmental, Clinical and Analytical Applications; and (H) Biotechnology and Marketing. In short, all aspects of the area are presented, in a compact format which will appeal to undergraduates, technicians, and professional scientists in the food, clinical, environmental, pharmaceutical and industrial fields.
Flammability has been recognized as an increasingly important social and scientific problem. Fire statistics in the United States (Report of the National Commission on Fire Prevention and Control. "America Burning: ' 1973) emphasized the vast devastation to life and property--12.000 lives lost annually due to fire. and these deaths are usually caused by inhaling smoke or toxic gases: 300.000 fire injuries: 11.4 billion dollars in fire cost at which 2.7 billion dollars is related to property loss: a billion dollars to burn injury treatment: and 3.3 billion dollars in productivity loss. It is obvious that much human and economic misery can be attributed to fire situations. In relation to this. polymer flammability has been recognized as an in creasingly important social and scientific problem. The development of flame-retardant polymeric materials is a current example where the initia tive for major scientific and technological developments is motivated by sociological pressure and legislation. This is part of the important trend toward a safer environment and sets a pattern for future example. Flame retardancy deals with our basic everyday life situations-housing. work areas. transportation. clothing and so forth-the "macroenvironment" capsule within which "homosapiens" live. As a result. flame-retardant polymers are now emerging as a specific class of materials leading to new and diversified scientific and technological ventures."
This book presents the principle ideas of combining different analytical techniques in multi-dimensional analysis schemes. It reviews the basic principles and instrumentation of multi- dimensional chromatography and the hyphenation of liquid chromatography with selective spectroscopic detectors and presents experimental protocols for the analysis of complex polymers. It is the consequent continuation of "HPLC of Polymers" from 1999 by the same authors. Like its 'predecessor', this book discusses the theoretical background, equipment, experimental procedures and applications for each separation technique, but in contrast treats multi-dimensional and coupled techniques. "Multidimensional HPLC of Polymers" intends to review the state of the art in polymer chromatography and to summarize the developments in the field during the last 15 years. With its tutorial and laboratory manual style it is written for beginners as well as for experienced chromatographers, and will enable its readers (polymer chemists, physicists and material scientists, as well as students of polymer and analytical sciences) to optimize the experimental conditions for their specific separation problems.
Materials that can mold the ?ow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (\1 lm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons. Both the mechanical properties of the individual colloidal particles, which manifest in their resonance vibrations (eigenmodes), as well as the acoustic propagation in colloidal structures have been investigated. The measurement of the eigenmodes allows for new insights into physical properties at the mesoscale, e.g., con?nement effects, copolymer behavior, or the non-destructive determination of nanomechanical properties of core-shell particles, supporting the working groups aim to achieve a deeper understanding of 'soft mechanics' at small length scales. Another novel contribution assigned to this thesis is the ?rst experimental rea- zation of a phononic band gap arising from the interaction of these particle - genmodes with the effective medium band (hybridization gap). This ?nding already gave new impulses to the whole ?eld of phononics.
This book presents the proceedings of the Second International Conference on Frontiers of Polymers and Advanced Materials held in Jakarta, Indonesia during January 10-15, 1993. This conference was organized and sponsored by the Indonesian Institute of Sciences (LIPI), the State University of New York (SUNY) at Buffalo, the Agency for Assessment and Application of Technology (BPPT), and the Indonesian Polymer Association. The 244 participants represented a total of 24 countries and a wide variety of academic, industrial and government groups. The inauguration was held in the Royal Palace and was performed by President Soeharto of Indonesia. High level media coverage ensured worldwide recognition. The need for such a conference was emphasized by the fact that polymers have emerged as an important class of materials offering challenging opportunities for both fundamental research and new technological applications. There has been a tremendous growth of interest in the field of polymers, both in academia and in industry, and polymer science offers tremendous opportunities for both fundamental and applied work. This globally represented Second International Conference on Frontiers of Polymers and Advanced Materials was timely, especially given the current heightened enthusiasm for polymers and emerging novel applications.
This volume includes 11 contributions to the 23rd Conference of the European Colloid and Interface Society which took in Antalya, Turkey between September 6th and 11th, 2009. The contributions from leading scientists cover a broad spectrum of topics concerning* Self Assembly* Interfacial Phenomena* Colloidal Dispersions and Colloidal Stability* Polymer Solution, Gels and Phase Behaviour* Nanostructured Materials* Biomaterials and Medical AspectsDue to the increasing significance of Colloid and Interface Science for both scientific and technical applications where scientific principles also contribute to new technologies in fast improving Nanotechnology and Medical Science, this book will be an essential source of information with respect to recent developments and results related to this field.
Liquid-crystalline phases are now known to be formed by an ever growing range of quite diverse materials, these include those of low molecular weight as well as the novel liquid-crystalline polymers, such phases can also be induced by the addition of a solvent to amphiphilic systems leading to lyotropic liquid crystals. Irrespective of the structure of the constituent molecules these numerous liquid-cl)'Stailine phases are characterised by their long range orientational order. In addition certain phases exhibit elements of long range positional order. Our understanding, both experimental and theoretical, at the molecular level of the static behaviour of these fascinating and important materials is now well advanced. In contrast the influence of the long range order; both orientational and positional, on the molecular dynamics in liquid Cl)'Stais is less well understood. In an attempt to address this situation a NATO Advanced Study Institute devoted to liquid ctystal dynamics was held at n Ciocco, Barga, Italy in September 1989. This brought together experimentalists and theoreticians concerned with the various dynamical processes occurring in all liquid crystals. The skills of the participants was impressively wide ranging; they spanned the experimental techniques used in the study of molecular dynamics, the nature of the systems investigated and the theoretical models employed to understand the results. While much was learnt it was also recognised that much more needed to be done in order to advance our understanding of molecular dynamics in liquid Cl)'Stais.
Polymer Latices, Second Edition is a comprehensive update of the previous edition, High Polymer Latices, taking into account the many developments since it was first published in 1966. It is the only publication to provide such an outstanding and extensive review of latex science and technology, from background theory and principles, to modern day applications. It will prove an invaluable reference source for all those working in the area of latex science and technology, such as colloid chemists, polymer scientists, and materials processors.
Table of Contents -Shape-Memory Polymers and Shape-Changing Polymers By M. Behl, J. Zotzmann, and A. Lendlein -Shape-Memory Polymer Composites By Samy A. Madbouly and Andreas Lendlein -Characterization Methods for Shape-Memory Polymers By W. Wagermaier, K. Kratz, M. Heuchel, and A. Lendlein -Shape-Memory Polymers for Biomedical Applications By Christopher M. Yakacki and Ken Gall -Controlled Drug Release from Biodegradable Shape-Memory Polymers By ChristianWischke, Axel T. Neffe, and Andreas Lendlein
Since their first industrial use polymers have gained a tremendous success. The two volumes of "Polymers - Opportunities and Risks" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 "Polymers - Opportunities and Risks I: General and Environmental Aspects" is dedicated to the basics of the engineering of polymers - always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 "Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists, but also for environmental managers and decision makers. |
![]() ![]() You may like...
Polymer Chemistry - International…
Timothy P. Lodge, Paul C. Hiemenz
Paperback
R1,442
Discovery Miles 14 420
Electroactive Polymers - Synthesis and…
Murali Srinivasan Natamai Subramanian
Hardcover
R4,717
Discovery Miles 47 170
Epoxy-Based Composites
Samson Jerold Samuel Chelladurai, Ramesh Arthanari, …
Hardcover
R3,398
Discovery Miles 33 980
Starch - Evolution and Recent Advances
Martins Ochubiojo Emeje
Hardcover
R3,428
Discovery Miles 34 280
Acrylate Polymers for Advanced…
Angel Serrano-Aroca, Sanjukta Deb
Hardcover
R3,390
Discovery Miles 33 900
Hydrogels - Smart Materials for…
Lacramioara Popa, Mihaela Violeta Ghica, …
Hardcover
R3,401
Discovery Miles 34 010
|