![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
With their broad range of properties, polymer blends are widely used in adhesion, colloidal stability, the design of composite and biocompatible materials, and other areas. As the science and technology of polymer blends advances, an increasing number of polymer blend systems and applications continue to be developed. Functional Polymer Blends: Synthesis, Properties, and Performance presents the latest synthesis and characterization methodologies for generating polymer blend systems. This one-stop resource brings together both experimental and theoretical material, much of which has previously only been available in research papers. Featuring contributions by eminent international experts, the book:
Combining background and advanced information on technologies, methods, and applications, this practical reference is a must-have for researchers and industry professionals as well as students in materials science, chemistry, and chemical and surface engineering.
Unlike previous volumes in the series for colloid and surface scientists, revolves generally around two topics: surfactants and polymers. The six papers discuss micelles of block and graft copolymers in solutions, surfactant association in nonaqueous media, a study of the boundary viscosity of organ
This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exudate gums, notably gum arabic. Another chapter discusses the potential of hemicelluloses (xylans and xylan derivatives) as a new source of functional biopolymers for biomedical and industrial applications. The algal polysaccharide, alginate, has significant application in food, pharmaceuticals and the medical field, all of which are reviewed in a separate chapter. Polysaccharides of animal origin are included with separate chapters on the sources, production, biocompatibility, biodegradability and biomedical applications of chitin (chitosan) and hyaluronan. With the increasing knowledge and applications of genetic engineering there is also an introduction in the book to nucleic acid polymers, the genome research and genetic engineering. Proteins and protein conjugates are covered, with one chapter providing a general review of structural glycoproteins, fibronectin and laminin, together with their role in the promotion of cell adhesion in vascular grafts, implants and tissue engineering. Another chapter discusses general aspects of a number of industrial proteins, including casein, caseinates, whey protein, gluten and soy proteins, with emphasis on their medical applications, and with reference to the potential of bacterial proteins. Another natural polymer resource, microbial polyesters, although small compared with polysaccharides and proteins, is also gaining increasing interest in biomedical technology and other industrial sectors. One chapter, therefore, is devoted to microbial polyesters, with comprehensive coverage of their biosynthesis, properties, enzymic degradation and applications. By dealing with biopolymers at the molecular level, the book is aimed at the biomedical and wider materials science communities and provides an advanced overview of biopolymers at the graduate and postgraduate level. In addition it will appeal to both academic and industrial life scientists who are involved in research and development activities in the medical and biotechnology field.
This book provides a comprehensive description of topological polymers, an emerging research area in polymer science and polymer materials engineering. The precision polymer topology designing is critical to realizing the unique polymer properties and functions leading to their eventual applications. The prominent contributors are led by Principal Editor Yasuyuki Tezuka and Co-Editor Tetsuo Deguchi. Important ongoing achievements and anticipated breakthroughs in topological polymers are presented with an emphasis on the spectacular diversification of polymer constructions. The book serves readers collectively to acquire comprehensive insights over exciting innovations ongoing in topological polymer chemistry, encompassing topological geometry analysis, classification, physical characterization by simulation and the eventual chemical syntheses, with the supplementary focus on the polymer folding, invoked with the ongoing breakthrough of the precision AI prediction of protein folding. The current revolutionary developments in synthetic approaches specifically for single cyclic (ring) polymers and the topology-directed properties/functions uncovered thereby are outlined as a showcase example. This book is especially beneficial to academic personnel in universities and to researchers working in relevant institutions and companies. Although the level of the book is advanced, it can serve as a good reference book for graduate students and postdocs as a source of valuable knowledge of cutting-edge topics and progress in polymer chemistry.
This book provides a concise and comprehensive introduction of polymer membranes' preparation, functionalization and applications in biotechniques including affinity membrane chromatography, membrane-based biosensor and membrane-based bioreactor.Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography. Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed.A novel filter medium, i.e. nonwoven nanofiber membrane, and its preparation method, i.e. electrospinning technique, are also introduced in this book.
The term biotechnology has emerged on the contemporary scene fairly recently, but the basic concept of utilizing natural materials, either directly or in modified versions, dates back to antiquity. If we search the ancient literature, such as the Bible, we find hundreds of examples wherein people employed, or modified, natural materials for a variety of important uses. As far back as the days of Noah we find pitch, a natural material, being used as a caulk. Clothing was made from animal skins and the products of several plants. Today, we would consider these things as important biotechnological developments. Likewise, the human use of polymeric materials also has a long his tory. In fact, many of the original materials used by mankind were poly mers derived from nature, such as wood, flax, cotton, wool and animal skins, which were used for shelter and clothing. In recent years, however, the concept of biotechnology has taken on a new and renewed role in our society. This is due to a combination of factors, including an increased interest in environmental concerns and the desire to break free from the stranglehold that petrochemicals have placed on our society. If we can manufacture some of our polymers from renewable resources, then we can expect to prepare them for many more years into the future than we might if we could only depend on the petro chemical resources.
This book provides a concise and comprehensive introduction of polymer membranes' preparation, functionalization and applications in biotechniques including affinity membrane chromatography, membrane-based biosensor and membrane-based bioreactor.Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography. Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed.A novel filter medium, i.e. nonwoven nanofiber membrane, and its preparation method, i.e. electrospinning technique, are also introduced in this book.
This new work, Functional Polymeric Composites: Macro to Nanoscales, focuses on new challenges, findings, opportunities, and applications in the area of polymer composites. The chapters, written prominent researchers from academia, industry, and research institutes from around the world, present contemporary research and developments on advanced polymeric materials, including polymer blends, polymer electrolytes, bio-based polymer, polymer nanocomposites, etc. Several chapters also cover the applications of the polymeric systems in current industry development and synthesis and characterization of the products.
Among the materials found in Nature's many diverse living organisms or produced by human industry, those made from polymers are dominant. In Nature, they are not only dominant, but they are, as well, uniquely necessary to life. Conformations: Connecting the Chemical Structures and Material Behaviors of Polymers explores how the detailed chemical structures of polymers can be characterized, how their microstructural-dependent conformational preferences can be evaluated, and how these conformational preferences can be connected to the behaviors and properties of their materials. The authors examine the connections between the microstructures of polymers and the rich variety of physical properties they evidence. Detailed polymer architectures, including the molecular bonding and geometries of backbone and side-chain groups, monomer stereo- and regiosequences, comonomer sequences, and branching, are explicitly considered in the analysis of the conformational characteristics of polymers. This valuable reference provides practicing materials engineers as well as polymer and materials science students a means of understanding the differences in behaviors and properties of materials made from chemically distinct polymers. This knowledge can assist the reader design polymers with chemical structures that lead to their desired material behaviors and properties.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
Naturally occurring compounds, or natural products, have been and continue to be an important source of commercially successful products and leads in the pharmaceutical, agrochemical and nutritional sectors. The conference Functional Molecules from Natural Sources, which was held at Magdalen College, Oxford in July 2009, set out to highlight current trends, challenges and successes in the exploitation of natural products from microbial, plant and marine sources. This book is based on the proceedings of the conference and comprises modern and emerging perspectives on natural product utilization and improved strategies for their exploitation. Several case studies on important natural product leads, or functional molecules, are presented with the strategy for their development. These detail new medical applications in the use of familiar natural molecules and advances in the understanding and manipulation of natural product biosynthesis at the genetic level. Highlights include an authoritative review of the entire field of natural anticancer agents emphasising those currently in clinical development, an account of the optimisation of the pleuromutilin antibiotic template for human use and a comprehensive description of the research programme that resulted in the discovery of platensimycin. Articles on biosynthesis include studies of the antibiotics of Streptomyces coelicolor A3(2), the anthrax siderophore petrobactin and the modification of oxidation and glycosylation events in the biosynthesis of mithramycins. Written by leading industrial and academic practitioners from each sector, the book offers authoritative updates on new approaches to the use of naturally occurring compounds within the pharmaceutical, nutraceutical and agrochemical industries.
"... Giant molecules are important in our everyday life. But, as pointed out by the authors, they are also associated with a culture. What Bach did with the harpsichord, Kuhn and Flory did with polymers. We owe a lot of thanks to those who now make this music accessible ..."Pierre-Gilles de Gennes Nobel Prize laureate in Physics (Foreword for the 1st Edition, March 1996)This book describes the basic facts, concepts and ideas of polymer physics in simple, yet scientifically accurate, terms. In both scientific and historic contexts, the book shows how the subject of polymers is fascinating, as it is behind most of the wonders of living cell machinery as well as most of the newly developed materials. No mathematics is used in the book beyond modest high school algebra and a bit of freshman calculus, yet very sophisticated concepts are introduced and explained, ranging from scaling and reptations to protein folding and evolution. The new edition includes an extended section on polymer preparation methods, discusses knots formed by molecular filaments, and presents new and updated materials on such contemporary topics as single molecule experiments with DNA or polymer properties of proteins and their roles in biological evolution.
Ten years after the debut of the expansive CRC Handbook of Thermodynamic Data of Copolymer Solutions, The CRC Handbook of Phase Equilibria and Thermodynamic Data of Copolymer Solutions updates and expands the world's first comprehensive source of this vital data. Author Christian Wohlfarth, a chemical thermodynamicist specializing in phase equilibria of polymer and copolymer solutions and a respected contributor to the CRC Handbook of Chemistry and Physics, has gathered up-to-the-minute data from more than 500 newly published references. Fully committed to ensuring the reliability of the data, the author included only results with published or personally communicated numerical values. With volumetric, calormetric, and various phase equilibrium data on more than 450 copolymers and 130 solvents, this handbook furnishes: * 150 new vapor-liquid equilibrium datasets * 50 new tables containing classical Henry's coefficients * 250 new liquid-liquid equilibrium datasets * 350 new high-pressure fluid phase equilibrium * 70 new PVT-properties datasets * 40 new enthalpic datasets * Expanded second osmotic virial coefficients data table Carefully organized, clearly presented, and fully referenced, The Handbook of Phase Equilibria and Thermodynamic Data of Copolymer Solutions will prove a cardinal contribution to the open literature and invaluable to anyone working with copolymers.
Of related interest . . .
This book commemorates the "Nobel Laureate Professor Suzuki Special Symposium" at the International Union of Material Research Society-International Conference on Advanced Materials (IUMRS-ICAM2017), which was held at Kyoto University, Japan, in 2017. The book begins with a foreword by Professor Akira Suzuki. Subsequently, many authors who attended the special symposium describe the latest scientific advances in the field of carbon materials and carbon nanomaterials including polymers, carbon nanocomposites, and graphene. Carbon-based materials have recently been the focus of considerable attention, given their wide range of potential applications. Fittingly, the chapters in this book cover both experimental and theoretical approaches in several categories of carbon-related materials.
The unparalleled large-scale commercial application of poly(3,4-ethylenedioxythiophene), otherwise known as PEDOT, continues to fuel a need for literature about it that is concise, easily available, but sufficiently comprehensive. Designed to meet the requirements of readers from different areas of expertise and experience with the substance, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer provides a comprehensive overview of chemical, physical, and technical information about this preeminent and most forwardly developed electrically conductive polymer. An indispensable resource for researchers, developers, and users of PEDOT-written by the researchers who succeeded in commercializing it A necessary response to the massive interest-as well as patents and papers-spawned by PEDOT, this handbook provides basic knowledge and explores technical applications, based on information generated by universities and academic research, as well as by industrial scientists. Available in various formulations and conductivities, this versatile PEDOT can be adapted for the needs and specific industrial applications of its different users. Although valuable information exists in handbooks on polythiophene chemistry and physics, under which PEDOT falls, until now, few if any books have focused exclusively on this important conducting polymer-certainly not one that so completely elucidates both its experimental and practical aspects. This book: Begins with a brief history of conducting polymers and polythiophenes Describes the invention of PEDOT and its commercial outgrowth, PEDOT:PSS Emphasizes key technical and commercial aspects and usage of PEDOT and how they have stimulated scientific research in a wide range of fields Explains the chemical and physical background for PEDOT in terms of its primary use and incorporation in products including cellular phones and flat panel displays Valuable for readers at any level of familiarity with PEDOT, this one-stop compilation of information offers specialists several unpublished results from the authors' celebrated work, as well as often overlooked information from patents. Balancing sufficient detail and references for further study, this book is a powerful tool for anyone working in the field.
The manner in which polymers are linked, under certain conditions, forms the main focus of this work. Spectroscopy has, over the years, proved itself to be the technique in providing information at molecular levels for many polymer systems. This book provides an overview of the current state-of-the-art through contributions by world-renowned experts. Techniques covered include: ?1H and ?13C NMR; NMR Imaging, Solid State NMR, Infra Red and Raman spectroscopy, ESR, light and neutron scattering. The book will be invaluable to post graduate students of polymer science and researchers using any one of the many spectroscopic techniques.
In this important volume, the structures and functions of these advanced polymer and composite systems are evaluated with respect to improved or novel performance, and the potential implications of those developments for the future of polymer-based composites and multifunctional materials are discussed. It focuses exclusively on the latest research related to polymer and composite materials, especially new trends in frontal polymerization and copolymerization synthesis, functionalization of polymers, physical properties, and hybrid systems. Several chapters are devoted to composites and nanocomposites.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Ring systems represent a very important branch of organic chemistry. Benzene is perhaps the pre-eminent example and provides the benchmark for the so-called aromatic character of cyclic systems. Cycloalkanes are another prominent class of organic compounds and these saturated ring systems form a homologous series known as alicyclics. Materials that are constructed from organic polymers such as polythene, polystyrene, polyisoprene (natural rubber) and polyvinyl chloride are common features of our daily lives. Most of these and related organic polymers are generated from acyclic precursors by free radical, anionic, cationic or organometallic polymerisation processes or by condensation reactions. The focus of this book is monocyclic inorganic ring systems of the p-block elements and the polymers that are, in many cases derived from them. Bicyclic or polycyclic arrangements are considered when they are closely related to those of monocyclic systems. Inorganic heterocycles that are more accurately described as coordination complexes of chelating inorganic ligands are included only when they are directly related to an inorganic homocycle or heterocycle by the replacement of one p-block element by a more metallic p-block element. After a short introductory chapter, the first half of the book is comprised of seven chapters that deal with the fundamentals of the subject intended for undergraduates or researchers who are unfamiliar with the topic, covering the following areas: - synthetic methods - characterisation techniques - delocalisation in inorganic rings - paramagnetic inorganic rings - inorganic macrocycles - ligand chemistry - inorganic polymers (general concepts including, synthesis, structure and bonding, characterisation methods, properties and applications) The final four chapters discuss in detail the chemistry of inorganic homo- and hetero-cycles involving the elements of groups 13-16 (the p-block elements). The focus is on relating the early seminal contributions to the field with exciting new developments. From the fundamental standpoint, novel structures and new bonding concepts are highlighted, in addition to synthetic approaches. This is the first book that addresses both the fundamental and applied aspects of inorganic ring systems through an emphasis of their use as precursors to inorganic polymers and other useful materials (e.g. semiconductors and ceramics). The book is intended primarily for senior undergraduates and graduate students in inorganic chemistry, as well research workers in the field of inorganic ring systems and polymers. At the undergraduate level it serves as a supplementary text to the more general inorganic chemistry text books and at the graduate level it would be the text of choice for a course in the area of inorganic rings and polymers.
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymer-polymer or interpolymer complexes.There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research papers have been published on various aspects of complex formation reactions in solutions and interfaces, properties of interpolymer complexes and their potential applications. This book focuses on the latest developments in the area of interpolymer complexation via hydrogen bonding. It represents a collection of original and review articles written by recognized experts from Germany, Greece, Kazakhstan, Poland, Romania, Russia, UK, Ukraine, and the USA. It highlights many important applications of interpolymer complexes, including the stabilization of colloidal systems, pharmaceuticals, and nanomaterials.
This book focuses on exciting new research in polymer science. The first section of the book deals with new advancements in polymer technology, which includes polymers that are responsible for progress in the field of energy, electronics, and medical sciences. It focuses on the most promising polymer nanocomposites and nanomaterials. Composites are becoming more important because they can help to improve quality of life. The second section of the book highlights this aspect of macromolecules, while the third section emphasizes biopolymers, their development, and applications.
Elastomer-Based Composite Materials: Mechanical, Dynamic, and Microwave Properties and Engineering Applications is focused on elastomer-based composite materials comprising different types of reinforcing fillers. The book provides an informative examination of the possibilities for broadening the engineering applications of elastomer composites through using various types of hybrid fillers, ferrites, and ceramics, and also examines their synthesis and characterization. It discusses new hybrid fillers that have been synthesized by different techniques, e.g. impregnation of different substrates (carbon black, conductive carbon black, activated carbons, etc.) with silica or magnetite. These new fillers have been thoroughly characterized by standard techniques and by up-to-date methods, such as energy dispersive X-ray spectroscopy in scanning transmission electron microscopy (STEM-EDX), atomic absorption spectroscopy (AAS), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). The effect of those fillers upon the curing properties, mechanical and dynamic parameters, electrical conductivity, and dielectric and microwave characteristics of elastomer-based composites is discussed in detail in this volume. The book also covers the influence of various types of ceramics (SiC, B4C, and TiB2) and barium and strontium hexaferrites upon the aforementioned properties of rubber composites in conjunction with a view toward solutions for environmental problems caused by waste tires. The book shows that pyrolysis-cum-water vapor is a suitable and environmentally friendly method for the conversion of the waste green tires into useful carbon-silica hybrid fillers. The properties of elastomer-based composites comprising different types of nanostructures (fullerenes, carbon nanotubes, graphene nanoplatelets), modified activated carbons, and calcined kaolin are also discussed. Special attention is paid to composites with lower levels of zinc oxide. The volume provides an abundance of knowledge on the detailed characterization of these fillers and on the curing, mechanical, dynamic mechanical, and dielectric and microwave properties of the elastomeric composites. The book surveys the most recent research activities of the authors, which will make it a vital reference source for scientists in both the academic and industrial sectors, as well as for individuals who are interested in rubber materials. It will be very useful for students, especially PhD students, scientists, lecturers, and engineers working or doing research in the field of polymer materials science, elastomer-based composites and nanocomposites and their engineering applications in the production of microwave absorbers and electromagnetic waves shielding materials, materials for electronics devices and telecommunications.
This book reports the basics of hybrid phosphor materials, their synthesis routes and their special properties and characterization techniques. It gives the reader information about the natural origins and development of hybrid materials, which are developed by combining inorganic and organic species in one material interface-determined materials. The book provides a general classification of hybrid materials, wherein inorganic materials modified by organic moieties are distinguished from organic materials or matrices modified by inorganic constituents. It gives a focus to the functionalization of organic materials by inorganic additives. The application areas covered include optoelectronic field, sensor applications, biological and environmental applications.
Thermal analysis is an old technique. It has been neglected to some degree because developments of convenient methods of measurement have been slow and teaching of the understanding of the basics of thermal analysis is often wanting. Flexible, linear macromolecules, also not as accurately simply called polymers, make up the final, third, class of molecules which only was identified in 1920. Polymers have neverbeenfullyintegratedintothedisciplinesofscienceandengineering. Thisbook is designed to teach thermal analysis and the understanding of all materials, flexible macromolecules, as well as those of the small molecules and rigid macromolecules. The macroscopic tool of inquiry is thermal analysis, and the results are linked to microscopic molecular structure and motion. Measurements of heat and mass are the two roots of quantitative science. The macroscopic heat is connected to the microscopic atomic motion, while the macroscopic mass is linked to the microscopic atomic structure. The macroscopic unitsofmeasurementofheatandmassarethejouleandthegram, chosentobeeasily discernable by the human senses. The microscopic units of motion and structure are 12 10 the picosecond (10 seconds) and the angstrom (10 meters), chosen to fit the atomic scales. One notes a factor of 10,000 between the two atomic units when expressed in human units, second and gram with one gram being equal to one cubic centimeter when considering water. Perhaps this is the reason for the much better understanding and greater interest in the structure of materials, being closer to human experience when compared to molecular motion." |
You may like...
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
(1)
The Art of DuckTales (Deluxe Edition)
Ken Plume, Disney
Hardcover
|