![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
Thermodynamic data form the basis for separation processes used in different fields of science and industry, from specialty chemicals to foods and pharmaceuticals. One obstacle to developing new production processes, products, or optimization is the lack, or inaccessibility, of experimental data related to phase equilibrium. Access More Than 1200 Data Sets, Including 810 Binary Systems, 325 Ternary Systems, and 25 Quaternary (or Higher) Systems The CRC Handbook of Liquid-Liquid Equilibrium Data of Polymer Solutions provides a thorough and up-to-date compilation of experimental liquid-liquid equilibrium (LLE) data and their original sources. Arranged in a consistent format, the handbook provides convenient access to cloud-point and coexistence data as well as upper and lower critical solution temperatures and important demixing data for each system. An Excellent Companion to the Author's Previous Collections of Thermodynamic Data! While the author's previous data compilations center around specific types of polymer systems, Wohlfharth'slatest work distinguishes itself by focusing instead on representing LLE data for all types of polymer systems in a single source.
Nanomaterials are becoming ubiquitous; microbes similarly are everywhere. This book focuses on various ways the diverse nanomaterials interact with microbial communities and implications of such interactions. Both toxicity and beneficial effects of nanomaterial-microbe interactions have been covered. This includes areas such as fate and bioavailability of nanomaterials in environments, microbial synthesis of nanomaterials and antimicrobial action of nanomaterials. Fairly comprehensive but with narrow focus, the book provides useful insights into these interactions which need to be factored in while designing nanoscience based new technologies.
Every electrochemical source of electric current is composed of two electrodes with an electrolyte in between. Since storage capacity depends predominantly on the composition and design of the electrodes, most research and development efforts have been focused on them. Considerably less attention has been paid to the electrolyte, a battery's basic component. This book fills this gap and shines more light on the role of electrolytes in modern batteries. Today, limitations in lithium-ion batteries result from non-optimal properties of commercial electrolytes as well as scientific and engineering challenges related to novel electrolytes for improved lithium-ion as well as future post-lithium batteries.
Heterophase polymerization is a century-old technology with a wide range of relevant industrial applications, including coatings, adhesives, rubbers, and many other specialized biomedical and high-performance materials. However, due to its multiscale complexity, it still remains a challenging research topic. It is a broad field covering all heterogeneous polymerization processes that result in polymer dispersions. Its technical realizations comprise emulsion polymerization, dispersion polymerization, suspension polymerization, miniemulsion polymerization, microemulsion polymerization, and others. This book is devoted to the science and technology of heterophase polymerization, considering it a generic term as well as an umbrella expression for all of its technical realizations. It presents, from a modern perspective, the basic concepts and principles required to understand the kinetics and thermodynamics of heterophase polymerization at the atomistic, molecular, macromolecular, supramolecular, colloidal, microscopic, mesoscopic, and macroscopic scales. It critically discusses the important physicochemical mechanisms involved in heterophase polymerization, such as nucleation, particle aggregation, mass transfer, swelling, spontaneous emulsification, and polymerization kinetics, along with the experimental evidences at hand.
Renowned experts give all essential aspects of the techniques and applications of graft copolymers based on polysaccharides. Polysaccharides are the most abundant natural organic materials and polysaccharide based graft copolymers are of great importance and widely used in various fields. Natural polysaccharides have recently received more attention due to their advantages over synthetic polymers by being non-toxic, biodegradable and available at low cost. Modification of polysaccharides through graft copolymerization improves the properties of polysaccharides. Grafting is known to improve the characteristic properties of the backbones. Such properties include water repellency, thermal stability, flame resistance, dye-ability and resistance towards acid-base attack and abrasion. Polysaccharides and their graft copolymers find extensive applications in diversified fields. Applications of modified polysaccharides include drug delivery devices, controlled release of fungicides, selective water absorption from oil-water emulsions, purification of water etc.
Rubber-to-metal bonded systems are widely used in industry with long term service, such as in high-speed trains and marine ships. These complex systems are difficult to model and predict. Hence, a comprehensive book for simulation methods in this specialized field is desirable.This book is intended for engineers who work in industry on the simulation, design and applications of rubber anti-vibration systems. In addition, it can serve as a reference book for scientists.This book is the Second Edition of the book entitled 'Numerical Prediction & Case Validation for Rubber Anti-vibration System' (in both English and Chinese). The newly added content contains predictions on idealized Mullins effect without data fitting; creep/relaxation variations from temperature change, loading, hardness and different component and dynamic interaction between solid rubber and fluid.
This timely volume provides an overview of polymer characterization test methods and presents experimental research in polymers using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications and demonstrates the advantages and disadvantages of each physical technique. Thus, readers will be able to apply the concepts as described in the book to their own experiments. The successful characterization of polymer systems is one of the most important objectives of today's experimental research of polymers. Considering the tremendous scientific, technological, and economic importance of polymeric materials, especially in industry, it is impossible to overestimate the usefulness of experimental techniques in this field. Since the chemical, pharmaceutical, medical, and agricultural industries, as well as many others, depend on this progress to an enormous degree, it is critical to be as efficient, precise, and cost-effective in our empirical understanding of the performance of polymer systems as possible. This presupposes our proficiency with, and understanding of, the most widely used experimental methods and techniques. The methods and instrumentation described in this volume represent modern analytical techniques useful to researchers, product development specialists, and quality control experts in polymer synthesis and manufacturing. Engineers, polymer scientists, and technicians will find this volume useful in selecting approaches and techniques applicable to characterizing molecular, compositional, rheological, and thermodynamic properties of elastomers and plastics.
"the present book will be of great value for both newcomers to the field and mature active researchers by serving as a coherent and timely introduction to some of the modern approaches, ideas, results, emerging understanding, and many open questions in this fascinating field of polymer glasses, supercooled liquids, and thin films" -Kenneth S. Schweizer, Morris Professor of Materials Science & Engineering, University of Illinois at Urbana-Champaign (from the Foreword) This book provides a timely and comprehensive overview of molecular level insights into polymer glasses in confined geometries and under deformation. Polymer glasses have become ubiquitous to our daily life, from the polycarbonate eyeglass lenses on the end of our nose to large acrylic glass panes holding water in aquarium tanks, with advantages over glass in that they are lightweight and easy to manufacture, while remaining transparent and rigid. The contents include an introduction to the field, as well as state of the art investigations. Chapters delve into studies of commonalities across different types of glass formers (polymers, small molecules, colloids, and granular materials), which have enabled microscopic and molecular level frameworks to be developed. The authors show how glass formers are modeled across different systems, thereby leading to treatments for polymer glasses with first-principle based approaches and molecular level detail. Readers across disciplines will benefit from this topical overview summarizing the key areas of polymer glasses, alongside an introduction to the main principles and approaches.
This book provides a broad overview of current studies in the engineering of polymers and chemicals of various origins. The innovative chapters cover the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers. This book publishes significant research and reviews reporting new methodologies and important applications in the fields of industrial chemistry, industrial polymers, and biotechnology, as well the latest coverage of chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
This new book provides a solid understanding of the recent developments in the field of composites and nanocomposites. It explains the significance of the new fillers, such as graphene and arbon nanotubes in different matrix systems. The application of these materials in biological and others fields also makes this book unique. This detailed study of nanocomposites, their structure, processing and characterization will be of value in all walks of engineering life. The book covers the following topics: * polymer matrix composites * ceramic matrix composites * carbon matrix composites * wood-based composites * biocomposites * ecocomposites * nanocomposites * processing * properties * fracture and damage mechanics * durability * and more Composite materials are solids that contain two or more distinct constituent materials or phases, on a scale larger than the atomic. The term "composite" is usually reserved for those materials in which the distinct phases are separated on a scale larger than the atomic, and in which properties such as the elastic modulus are significantly altered in comparison with those of a homogeneous material. Composites have properties that cannot be achieved by either of the constituent materials alone. Composites are becoming more and more important as they can help improve our quality of life. Composites are put into service in flight vehicles, automobiles, boats, pipelines, buildings, roads, bridges, and dozens of other products. Researchers are finding ways to improve other qualities of composites so they may be strong, lightweight, long-lived, and inexpensive to produce. The science and engineering of composites and nanocomposites draws on traditional characterization and processing technologies. Research describing structures containing nanoparticles seems to rely on methods that are being pushed to the limit of resolution. Preparation of nanocomposites also poses very real processing challenges. The list of questions about the fabrication, characterization, and use of nanocomposites is long despite massive financial and intellectual investment. The magnitude of the effects these small particles impart to the bulk properties of a composite are great enough that the science is likely to continue to grow in importance.
Using fractal analysis, irreversible aggregation models, synergetics, and percolation theory, this book describes the main reactions of high-molecular substances. It is the first to give the structural and physical grounds of polymers synthesis and curing based on fractal analysis. It provides a single equation for describing the relationship between the reaction rate constants and the equilibrium constants with the nature of the medium.
This new book presents the authors' biomedical studies of natural degradable biopolymers (polyhydroxyalkanoates [PHAs]) and discusses the demand for medical-grade materials and modern trends, focusing on the present status and future potential of PHAs. The authors present and summarize their most important results and findings obtained during the last few years in experimental studies and clinical trials of PHAs at the Institute of Biophysics Siberian Branch of Russian Academy of Science.
Green Polymers and Environment Pollution Control examines the latest developments in the important and growing field of producing conventional polymers from sustainable sources. Presenting cutting-edge research from a group of leading international researchers from academia, government, and industrial institutions, the book explains what green polymers are, why green polymers are needed, which green polymers to use, and how manufacturing companies can integrate them into their manufacturing operations. It goes on to provide guidelines for implementing sustainable practices for traditional petroleum-based plastics, biobased plastics, and recycled plastics. With recent advancements in synthesis technologies and the discovery of new functional monomers, research shows that green polymers with better properties can be produced from renewable resources. The book describes these advances in synthesis, processing, and technology. It provides not only state-of-the-art information but also acts to stimulate research in this direction. Green Polymers and Environment Pollution Control offers an excellent resource for researchers, upper-level graduate students, brand owners, environment and sustainability managers, business development and innovation professionals, chemical engineers, plastics manufacturers, agriculture specialists, biochemists, and suppliers to the industry to debate sustainable, economic solutions for polymer synthesis.
With growing concern for the environment and the rising price of crude oil, there is increasing demand for non-petroleum-based polymers from renewable resources. Recognizing emerging developments in biopolymer systems research, this book brings together a number of key biopolymer and bioplastic topics in one place. The book highlights the importance and impact of eco-friendly green biopolymers and bioplastics, both environmentally and economically. It provides important insight into the diversity of polymers obtained directly from, or derived from, renewable resources. This volume, Applied Biopolymer Technology and Bioplastics: Sustainable Development by Green Engineering Materials, will be valuable for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. The content of this book will prove useful for students, researchers, and professionals working in the field of green technology.
Polymeric foams are sturdy yet lightweight materials with applications across a variety of industries, from packaging to aerospace. As demand for these materials increase, so does innovation in the development of new processes and products. This book captures the most dynamic advances in processes, technologies, and products related to the polymeric foam market. It describes the latest business trends including new microcellular commercialization, sustainable foam products, and nanofoams. It also discusses novel processes, new and environmentally friendly blowing agents, and the development and usage of various types of foams, including bead and polycarbonate, polypropylene, polyetherimide microcellular, and nanocellular. The book also covers flame-retardant foams, rigid foam composites, and foam sandwich composites and details applications in structural engineering, electronics, and insulation. Authored by leading experts in the field, this book minimizes the gap between research and application in this important and growing area.
Engineering design teams sometimes have need of a material that may not exist because the combination of required properties is difficult to achieve. One solution is to develop a new material having the required set of properties needed in the application. During the author's 40-year career he has successfully worked on many such problems. The uniquely useful and valuable book, Polymeric Thermosetting Compounds: Innovative Aspects of Their Formulation Technology, presents twenty of those design problems and the solutions, which resulted in patents and spin-off applications. Author Ralph Hermansen, with years of experience of hands-on experience, is an expert in formulating epoxies, polyurethanes, and other polymers into compounds that have unique properties, and here he shares his knowledge and experience of attaining novel solutions to very challenging problems. He covers polymeric compounds such as coatings, adhesives, encapsulants, transparent plastics, and others. Chapters describe the design problem and define which key properties are sought in the new material. The author shares his thinking about how to approach the formulating problem and describes the experimental procedures used to eventually solve the problem. Patent information is shared as well. Once a new family of polymeric compounds is developed, that technology can be used to attack new unsolved materials problems, or "spin-offs," and real-life examples are provided to help readers see new applications of the technologies described in the earlier chapters. The book will be of interest to a diverse group of people. Industry professionals already in the business of selling specialty compounds may be able to add new products to their catalogs with little research cost or time by using the information in the book. Formulators, trying to develop a new compound to challenging requirements, may gain insight into how to make a breakthrough. The information in the book will be very valuable to companies needing these novel solutions. And younger people wondering what a career in materials science would be like get a first-hand commentary from someone who has done it.
High-Performance Polymers for Engineering-Based Composites presents a selection of investigations and innovative research in polymer chemistry and advanced materials. The book includes case studies in the field of nanocomposites. The volume provides coverage of new research in polymer science and engineering with applications in chemical engineering, materials science, and chemistry. In addition to synthetic polymer chemistry, it also looks at the properties of polymers in various states (solution, melt, solid). The chapters provide a survey of the important categories of polymers including commodity thermoplastics and fibers, elastomers and thermosets, and engineering and specialty polymers. Basic polymer processing principles are explained as well as in-depth descriptions of the latest polymer applications in different industrial sectors. This new book reviews the field's current state and emerging advances. With contributions from experts from both the industry and academia, this book presents the latest developments in polymer products and chemical processes.
Natural Fiber Textile Composite Engineering sheds light on the area of the natural fiber textile composites with new research on their applications, the material used, the methods of preparation, the different types of polymers, the selection of raw materials, the elements of design the natural fiber textile polymer composites for a particular end use, their manufacturing techniques, and finally their life cycle assessments (LCA). The volume also addresses the important issue in the materials science of how to utilize natural fibers as an enhancement to composite materials. Natural fiber-reinforced polymer composites have been proven to provide a combination of superior mechanical property, dielectric property, and environmental advantages such as renewability and biodegradability. Natural fibers, some from agricultural waste products, can replace existing metallic and plastic parts and help to alleviate the environmental problem of increasing amounts of agriculture residual. The book is divided into four sections, covering: applications of natural fiber polymer composites design of natural fiber polymer composites composite manufacturing techniques and agriculture waste manufacturing composite material testing methods The first section of the book deals with the application of textile composites in the industry and the properties of the natural fibers, providing an understanding of the history of natural fiber composites as well as an analysis of the different properties of different natural fibers. The second section goes on to explain the textile composites, their classification, different composite manufacturing techniques, and the different pretreatment methods for the natural fibers to be used in composite formation. It also analyzes the composite material design under different types of loading and the mechanism of failure of the natural fiber composite. The effect of the fiber volume fraction of different textile structures is explained. The third section of the book, on composite manufacturing techniques and agriculture waste manufacturing, concerns the natural fiber composite manufacturing techniques, agricultural waste, and the methods of their preparation to be used successfully in the composite, either in the form of fibers particles or nanoparticles. The book then considers the testing methods of the different composite components as well as the final composite materials, giving the principle of the testing standards, either distractive or nondestructive. This book attempts to fill the gap between the role of the textile engineer and the role of the designer of composites from natural fibers. It provides important information on the application of textile composites for textile engineers, materials engineers, and researchers in the area of composite materials.
This book focuses on food, non-food, and industrial packaging applications of polymers, blends, nanostructured materials, macro, micro and nanocomposites, and renewable and biodegradable materials. It details physical, thermal, and barrier properties as well as sustainability, recycling, and regulatory issues. The book emphasizes interdisciplinary research on processing, morphology, structure, and properties as well as applications in packaging of food and industrial products. It is useful for chemists, physicists, materials scientists, food technologists, and engineers.
With chapters by the editors and other experts in the field of polymer science, this book covers a broad selection of important research advances in the field, including updates on enzymatic destruction and photoelectric characteristics, studies on the changes in the polymer molecular mass during hydrolysis and a new type of bioadditive for motor fuel, and an exploration of the interrelation of viscoelastic and electromagnetic properties of densely cross-linked polymers. Also included are chapters that discuss the problems of mechanics of textile performance, new aspects of polymeric nanofibers, a mathematical model of nanofragment cross-linked polymers, and much more.
Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: * Discusses a variety of energy storage systems and their workings and a detailed history of LIBs * Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes * Provides a comprehensive review of biopolymer electrolytes for energy storage applications * Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.
This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers. This book is designed to bring together in a single volume the many important aspects of hydrogen bonding supramolecular chemistry and will be a valuable resource for graduates and researchers working in supramolecular and related sciences. Zhan-Ting Li, PhD, is a Professor of Organic Chemistry at the Department of Chemistry, Fudan University, China. Li-Zhu Wu, PhD, is a Professor of Organic Chemistry at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China.
The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Covers the intracellular on-goings in PHA-accumulating bacteria Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks Summarizes recent relevant results dealing with PHA production from various organic by-products Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis
This valuable book is devoted to problems of the synthesis, vulcanization, modification, and study of structure and properties of highly filled sealants based on polysulfide oligomers (PSO). The book summarizes information concerning chemistry, synthesis technology, structure, and properties of liquid thiokols and thiokol-containing polyesters. It also presents a literary survey on chemism and mechanisms for liquid thiokols vulcanization involving oxidants or through polyaddition. The book describes formulation principles of sealants, their properties, and application areas. The book provides research on vulcanization and modification of thiokol sealants involving thiokol-epoxy resin copolymers, unsaturated polyesters, and various isocyanate prepolymers. It describes studies of mechanisms underlying vulcanization of polysulphide oligomers by manganese dioxide, sodium dichromate and zinc oxide, and also of the structure and properties of sealants on the basis of a liquid thiokol and commercial " -2" polymer depending on a chemical nature and the ratio of constituent oligomers. The book gives information on the influence of filling materials on vulcanization kinetics, rheological, and physico-mechanical properties of sealants depending on the nature of PSO. The book will be of interest to research personnel of scientific institutes and centers developing reactive oligomers and their compositions and studying their structure and properties as well as engineers working in science centers or enterprises working in the area of development, production, and application of polysulfide oligomers and sealants.
This book provides comprehensive coverage on the latest developments of research in the ever-expanding area of polymers and advanced materials and their applications to broad scientific fields including physics, chemistry, biology, and materials. It presents physical principles in explaining and rationalizing polymeric phenomena. Featuring classical topics that are conventionally considered as part of chemical technology, the book covers the chemical principles from a modern point of view. It analyzes theories to formulate and prove the polymer principles and offers future outlooks on applications of bioscience in chemical concepts. |
You may like...
Post-cinema - Cinema in the Post-art Era
Jose Moure, Dominique Chateau
Hardcover
Optimum Experimental Designs, with SAS
Anthony Atkinson, Alexander Donev, …
Paperback
R2,249
Discovery Miles 22 490
Successful Women in Chemistry…
Amber S. Hinkle, Jody A. Kocsis
Hardcover
R2,795
Discovery Miles 27 950
|