![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
"Long-Term Durability of Polymeric Matrix Composites" presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.
This book summarizes many of the recent research accomplishments in the area of polyvinylchloride (PVC)-based blends and their preparation, characterization and applications. Various sub-topics are addressed, such as the state-of-the-art of PVC based blends, new challenges and opportunities, emphasis being given to the types and sizes of components/fillers and optimum compositions of PVC blends, their processing and structure-properties relationships, modification/compatibilization methods, and possible applications. PVC/thermoplastic based nano, micro and macro blends, PVC membranes, bio-based plasticizers and PVC blends with components from renewable resources are reported. The various chapters in this book are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe. It covers an up-to-date record on the major findings and observations in the field of PVC-based blends.
The chapters in this collection are from papers which were presented at a symposium on solid-state NMR of polymers. A two-part program on available NMR techniques applicable to solid polymer analysis was presented at the 3rd Chemical Congress of North American held in Toronto, Ontario, June 5-10,1988. The program was sponsored by the Division of Polymer Chemistry with support provided by the Division, its Industrial Sponsors, and the Donors of the Petroleum Research Fund administered by the American Chemical Society. Co-organizers included Professor Colin Fyfe of the University of British Columbia (Vancouver, Canada), Professor Hans Spiess of the Max Planck Institut fur Polymerforschung (Mainz, West Germany), and myself. The full-day tutorial, which was free to registered attendees, covered the range of topics. The purpose of the tutorial was to provide a basic introduction to the field so that newcomers to its present and future applications could develop sufficient understanding to learn effectively from the subsequent symposium. The first talk attempted to give listeners a feel for the way a novice spectroscopist can learn to use the various NMR techniques to explore his own areas of interest. Simple experiments can provide unique information about solid polymers that can be useful in interpreting synthetic results and in relating solid-state conformation, morphology and molecular motion to physical properties.
Colloid-polymer mixtures are subject of intensive research due to their wide range of applicability, for instance in coatings and food-stuffs. This thesis constitutes a fundamental investigation towards a better control over the stability of such suspensions. Through the chapters, different key parameters governing the stability of colloid-polymer mixtures are explored. How the colloid (pigment) shape and the effective polymer-colloid affinity modulate the stability of the suspension are examples of these key parameters. Despise the mostly theoretical results presented, the thesis is written in a format accessible to a broad scientific audience. Some of the equations of state presented might of direct use to experimentalists. Furthermore, new theoretical insights about colloid-polymer mixtures are put forward. These include four-phase coexistences in effective two-component, quantification of depletant partitioning at high colloidal concentrations, multiple re-entrant phase behaviour of the colloidal fluid-solid coexistence, and a condition where polymers are neither depleted nor adsorbed from/to the colloidal surface.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
Clearly presents the state of the art and future trends in the research of the biodegradable polymers in the context of circular economy Covers entire value chain and life cycle of biopolymers, considering different types of polymers Clarifies the life safety of (bio)degradable polymeric materials Presents novel opportunities and ideas for developing or improving technologies Determines the course of degradation during prediction study
Reviewing over 100 chemical and physical methods for analysis of polymers, Manual of Plastics Analysis is so detailed and comprehensive that chemists can apply the methods - many previously unpublished - directly from the book. A genuine laboratory manual, the volume supplies prodigious amounts of up-to-date information on all types of polymers, polymer additives, volatiles, adventitious impurities, monomers, metals, and pigments. Extremely well-suited for classroom teaching, research, or industrial applications, the book contains numerous tables and figures, as well as many chemical equations illustrating its analytical techniques.
Service Life Prediction of Polymers and Coatings: Enhanced Methods focuses on the cutting-edge science behind how plastic and polymer materials are modified by the effects of weathering, offering the latest advances in service life prediction methods. The chapters have been developed by experts based on their contributions as part of the 7th Service Life Prediction Meeting. The volume begins with the premise that it is possible to produce and design life predictions, also looking at how these predictions can be used. Subsequent chapters present new developments in service life prediction, examining the most important considerations in SLP design, timescales, and other major issues. The book also considers the current state of the field in terms of both accomplishments and areas that require significant research going forward. This is a highly valuable reference for engineers, designers, technicians, scientists and R&D professionals who are looking to develop materials, components or products for outdoor applications across a range of industries. The book also supports academic researchers, scientists and advanced students with an interest in service life, the effects of weathering, material degradation, failure analysis, or sustainability across the fields of plastics engineering, polymer science and materials science.
It is generally accepted that a new material is often developed by ?nding a new synthesis method of reaction or a new reaction catalyst. Historically, a typical example may be referred to as a Ziegler-Natta catalyst, which has allowed large-scale production of petroleum-based polyole?ns since the middle of the 20th century. New polymer synthesis, therefore, will hopefully lead to creation of new polymer materials in the 21st century. This special issue contributed by three groups focuses on recent advances in polymer synthesis methods, which handle the cutting-edge aspects of the advanced technology. The ?rst article by Yokozawa and coworkers contains an overview of the - action control in various condensation polymerizations (polycondensations). Advanced technologies enabled the control of stereochemistry (regio-, g- metrical-, and enantio-selections), chemoselectivity, chain topology, and st- chiometry of monomers, giving a high molecular weight polymer. It has been recognized for a long time, however, that polycondensation is a dif?cult p- cess in controlling the reaction pathway, because the reaction is of step-growth and the reactivity of monomers, oligomers, and polymers are almost the same during the reaction and hence, the molecular weight of polymers and its d- tribution (M /M ) are impossible to regulate. The authors' group developed w n a new reaction system (chain-growth condensation polymerization), changing the nature of polycondensation from step-growth to chain-growth; namely the propagating chain-end is active, allowing for control of the product molecular weight as well as the distribution.
Revised, updated and expanded to continue to provide the most accurate, compact and practical source on fluoropolymers. Explores breakthroughs in understanding property-structure relationships, new polymerization techniques and the chemistry underlying polymers. Fluoropolymers are high up on the specialty polymers group and due to their unique properties, are naturally part of the solution to industrial sustainability challenges. Describes the technology of fluoropolymers, including thermoplastic and elastomeric products. Expands upon critical environmental aspects of fluoropolymers and recycling of these special polymers
Processing of polymer nanocomposites usually requires special attention since the resultant structure-micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration. Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites. This book focuses heavily on the processing technologies and strategies and extensively addresses the processing-structure-property-performance relationships in a wide range of polymer nanocomposites, such as commodity polymers (chapter 1), engineering polymers (chapter 2), elastomers (chapter 3), thermosets (chapter 4), biopolymers (chapter 5), polymer blends (chapter 6), and electrospun polymer (chapter 7). The important role played by nanoparticles in polymer blends structures in particular is illustrated. The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.
Polyoxometalates are anionic metal-oxo nanoclusters, which constitute a unique class of compounds owing to their rich solution equilibria and their unique compositional, electronic, reactive, and structural diversity. This book reviews metal-oxide cluster chemistry by covering topics ranging from fundamental aspects (i.e., structure, properties, self-assembly processes, derivatization) to functional materials that incorporate these molecular units, as well as their applications in the fields of current socioeconomic interest, such as energy storage systems, catalysis, molecular electronics, and biomedicine. Edited by prominent researchers in the field of polymer and polyoxometalate chemistries, the book compiles contributions from some of the most distinguished and promising scientists worldwide in such a way that it will appeal to a general readership involved in research areas related to chemistry and materials science.
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
Provides description of functional foams, their manufacturing methods, properties, and applications Covers various blowing agents, greener methods for foaming, and emerging applicability Illustrates comparative information regarding polymeric foams and recent developments with polymer nanocomposite foams Includes applications in mechanical, civil, biomedical, food packaging, electronics, health care industry, and acoustics fields Reviews elastomeric foams and their nanocomposite derivatives
Environmentally compatible polymers (green polymers) are the key to
sustainable developments for our rich and convenient life. In order
to develop green polymers, it is essential to understand that
nature constructs a variety of materials that can be used. Plant
materials such as cellulose, hemicellulose and lignin are the
largest organic resources. -Fundamentals of thermal properties of cellulose, polysaccharides and lignin (Chapters 3 to 5); -Developments of new biocompatible polymers derived from plant materials (Chapters 6 to 8). This book is aimed at advanced users and specialists who are interested in green polymers and who utilize thermal analyses for the above polymers, especially in research laboratories, both academic and industrial.
Thisbook continuesthe tradition ofproviding the scientificcommunity with infonnation on some ofthe most important advances reported at aseries ofconferences on Frontiers ofPolymers and Advanced Materials. The particular meeting covered in this proceedings volume was held in KualaLumpur, Malaysia, from January 16th through the 20th, 1995. It follows earlier proceedings, also published by Plenum, for a conference in New Delhi in 1991, and another in Jakarta in 1993. All of these conferences focused on the most recent and important advances in a wide range of carefully chosen subject areas dealing with advanced materials and new technologies. TheMalaysiaConference was organized by the Malaysian MinistryofScience, Technology and Environment; Malaysian Industry-Government Group for Higher Technology; Standards and Industrial Research Institute ofMalaysia; State University ofNew York at Buffalo; and Malaysian Plastic Manufacturers Association. The stated goals ofthe conference were: To highlight advances and new findings in Polymers and Advanced Materials To bring together leading international scientists, engineers and top level industrial managementfor discussionsonthe CUTTent status ofadvanced materials, new technologies and industrial opportunities To foster global communication in polymers and advanced materials technology. Tbe Malaysianconferencecoveredbytheseproceedingsemphasized"composites and blends," ''high-performance materials," ''materials for photonics," ''materials for electronics," ''biomaterials'', "recycling of materials," "sol-gel and processed materials," "advanced materials from natural products," and ''multifunctional and smart materials." There was also a separate symposium on ''business opportunities.""
This comprehensive volume provides current, state-of-the-art information on specialty polymers that can be used for many advanced applications. The book covers the fundamentals of specialty polymers, synthetic approaches, and chemistries to modify their properties to meet the requirements for special applications, along with current challenges and prospects. Chapters are written by global experts, making this a suitable textbook for students and a one-stop resource for researchers and industry professionals. Key Features: - Presents synthesis, characterization, and applications of specialty polymers for advanced applications. - Provides fundamentals and requirements for polymers to be used in many advanced and emerging areas. - Details novel methods and advanced technologies used in polymer industries. - Covers the state-of-the-art progress on specialty polymers for a range of advanced applications.
This book reviews the development of antifouling surfaces and materials for both land and marine environments, with an emphasis on marine anti biofouling. It explains the differences and intrinsic relationship between antifouling in land and marine environments, which are based on superhydrophobicity and superhydrophilicity respectively. It covers various topics including biomimetic antifouling and self-cleaning surfaces, grafted polymer brushes and micro/nanostructure surfaces with antifouling properties, as well as marine anti biofouling. Marine anti biofouling includes both historical biocidal compounds (tributyltin, copper and zinc) and current green, non-toxic antifouling strategies. This book is intended for those readers who are interested in grasping the fundamentals and applications of antifouling. Feng Zhou is a professor at the State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.
This book provides an introduction of how radiation is processed in polymeric materials, how materials properties are affected and how the resulting materials are analyzed. It covers synthesis, characterization, or modification of important materials, e.g. polycarbonates, polyamides and polysaccharides, using radiation. For example, a complete chapter is dedicated to the characterization of biodegradable polymers irradiated with low and heavy ions. This book will be beneficial to all polymer scientists in the development of new macromolecules and to all engineers using these materials in applications. It summarizes the fundamental knowledge and latest innovations in research fields from medicine to space.
During the past fifteen years commercial interest in compounds containing carbon fluorine bonds has burgeoned beyond all expectations, mainly owing to business opportunities arising from work on biologically active fluoroorganics-particularly agrochemicals, the relentless search for new markets for fluoropolymers and fluoro carbon fluids, developments in the field of medical diagnostics, and the drive to find replacements for ozone-depleting CFCs and Halon fire-extinguishing agents. Judging the situation to warrant the publication of a comprehensive collection of up-to-date reviews dealing with commercial organofluorine compounds within a single volume of manageable size (and hence reasonable cost), we were delighted to be invited by Plenum Publishing Corporation to produce a suitable book. In order to provide an authentic and wide-ranging account of current commercial applications of fluoroorganic materials, it clearly was necessary to assemble a sizeable team of knowledgeable contributing authors selected almost entirely from industry. Through their efforts we have been able to produce an almost complete coverage of the modem organofluorochemicals business in a manner designed to attract a reader ship ranging from experts in the field, through chemists and technologists currently unaware of the extent of industrial involvement with fluoroorganics, to students of applied chemistry. Promised chapters dedicated to perfluoroolefin oxides and 18F labeling of radiopharmaceuticals failed to materialize. This is somewhat unfortunate in view of our aim to achieve comprehensive coverage of the subject."
This comprehensive and authoritative book aims to encompass the best and current practices in the field of contemporary food packaging. It covers various aspects of packaging, including challenges and their solutions, innovations, and environmental concerns. Written by experts working in the field, the content is supported by technical/statistical data, practical examples, case studies, and real-life experiences of academicians and professionals working in the area of food packaging. The book covers challenges in food packaging, systems and materials for packaging, packaging design requirements of the food industry, technology machinery and system, printing and graphics, testing and regulatory aspects, advanced and smart packaging, distribution and logistics in a globalized environment, and sustainable and green packaging. This book will be useful for Packaging Technologists, food scientists, material scientists, policy makers, students, and researchers. |
![]() ![]() You may like...
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
|