![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
HighPerformance Polymers: Preparation and Polymerization of Macrocyclic Oligomers (D.J. Brunelle, T.L. Evans). Poly(Enaminonitriles) (J.A. Moore). Polymers for Electronic Applications: Cure Kinetics of Epoxy Cresol Novolac Encapsulant for Microelectronics Packaging (R.W. Biernath, D.S. Soane). Polypyrroles from Isoporous Alumina Membranes (R.P. Burford et al.). Nonlinear Optics: Nonlinear Optical Properties of New Dye Doped Photocrosslinkable Polymers (S. Tripathy et al.). NLO Device Structures from Polydiacetylenes (G.L. Baker). Polymers from Biological Sources: Genetic Engineering of Molecular and Supramolecular Structure in Polymers (D.A. Tirrell et al.). New Polymer Synthesis: Functionalized Polyolefins via Copolymerization of Borane Monomers in ZieglerNatta Process (T.C. Chung). 24 additional articles. Index.
A comprehensive introduction to the art and science used by the biochemist and process engineer in the design and optimization of large-scale protein-purification processes. Covers the basics of proteins' properties, the unit operations involved in protein purification as well as important related issues of process design, integration with upstream operations, cost and timing to market. Includes an abundance of figures and tables.
Many books offer coverage of the current work of top researchers, but rarely is any attempt made to look beyond the present day. "Emerging Themes in Polymer Science" is a unique book which not only documents the latest research but also provides an insight into the likely future of polymer science. At the heart of the debate, and a key feature of the book, is the relationship between polymer science and biology. Also discussed are polymer semiconductors and devices; polymer colloids; biomaterials; tissue engineering and polymers; neutron and synchrotron research; theory; and rheology.Anyone involved in polymer research, including those in the fields of electronics and nanotechnology, will welcome this book.
"Polymer Yearbook 17" brings together reviews and information on the progress of polymer science worldwide, including topical information such as a list of publications in polymer science and a compilation of dissertation abstracts. This volume includes reviews of key aspects of polymer science, including contributions from Russia, and details of important publications. This volume contains reviews on state-of-the-art Japanese research presented in the annual Spring and Fall meetings of the "Japanese Polymer Science Society". The aim of this section is to make information on the progress of Japanese polymer science, and on topics of interest to polymer scientists in Japan, more easily available worldwide.
This is the second volume in a series which presents the state of the art in chosen sectors of oil and fat chemistry, including its relevance to the food and pharmaceutical industries. The text in this book aims to provide an authoritative account of the use of a wide range of spectroscopic methods in the analysis of lipids, with an emphasis on topics that have attracted special attention.
An assessment of the known properties of natural products and their model compounds to determine their usefulness in biological and medical experimentation, as well as in synkinetics - the reversible synthesis of noncovalent compounds. It explores new techniques such as cryoelectron and scanning force microscopy and solid-state NMR spectroscopy of membrane systems. There are 500 figures and reaction schemes.
This volume has been designed to offer a balanced account of the laboratory synthesis, industrial manufacture and biosynthesis of lipids. Authors describe the synthesis of all the major lipid classes, including new and revised procedures, and there are chapters devoted to the synthesis and manufacture of vitamin E, other natural antioxidants, sugar esters and ethers, and food surfactants. This authoritative work of reference has something for all lipid scientists and technologists. It is directed at chemists and technologists working in oils and fats processing, the food industry, the oleochemicals industry and the pharmaceutical industry; at analytical chemists and quality assurance personnel; and at lipid chemists in academic research laboratories.
This book presents the chemical properties of lignocellulosic fibers, knowledge of which is essential for innovation and sustainable development of their transformation. Thermochemical transformation of wood and other lignocellulosics is presented to highlight its volatile, liquid and solid products and their novel applications. Forest biorefinery is described to emphasize the new products from lignocellulosic constituents, both structural (cellulose, hemicelluloses and lignins) and those extraneous to cell walls-extractives. New developments in cellulose technology related to nanocellulose are discussed in relation to new applications. Industrial lignins are presented in detail, both in terms of extraction procedures from spent liquors and structural characterization of the isolated lignins. Application of lignocellulosic biopolymers in new composite materials, or in biomaterials for medicinal purposes, and in solid wood preservation, are described. The example of an industrial biorefinery installed in southwestern France more than 40 years ago is presented.
Principles of Polymer Science and Technology in Cosmetics and Personal Care
"Provides practical information on the application of capillary electrophoresis (CE) to protein analysis, with an emphasis on developing and optimizing CE techniques in the laboratory. Includes separation methods bases on mass, charge, isoelectric point, molecular sieving, and affinity interactions."
Poled polymers doped with nonlinear optically active chromophores combine the large second order nonlinearity of the dopant dye molecules with the optical quality of the polymer. The material design flexibility afforded to doped polymers makes them attractive in a large variety of devices and applications. This book addresses the critical science and technology issues in the development and application of poled polymers, with an emphasis on the stabilization of poled polymers and their special applications to second harmonic generation (SHG) and electro-optic (EO) devices.
Cold hibernated elastic memory (CHEM) is an innovative, smart material technology that uses shape memory polymers in open cellular structures. This book extensively describes CHEM self-deployable structures, provides basic property data and characteristics, discusses advantages, and identifies numerous space, commercial, and medical applications. Some of these applications have been experimentally and analytically investigated with inspiring results and are revealed here. CHEM technology has a potential to provide groundbreaking self-deployable space structures. Some cutting-edge space CHEM concepts described in this book represent the introduction of a new generation of space deployable structures. CHEM materials have unique characteristics that enable the manufacture of self-deployable stents and other medical devices not possible currently. One of the medical applications, the CHEM endovascular treatment of aneurysm, is being experimentally explored with promising results that would save lives. This book provides a long list of interesting potential commercial CHEM applications that could simplify and make life easier at low cost. One of these products, the self-reconfiguring armchair, is already being set up for mass production. This book will be of interest to all engineering researchers, scientists, engineers, students, designers, and technologists across their relevant fields of interest. The exceptional characteristics of CHEM technology are presently enabling technologists to develop many applications ranging from outer space to inside the human body. As a result, CHEM structures are in the process of reshaping our thinking, approaches, and design methods in many ways that conventional materials and approaches do not allow.
Through its clear presentation of the basic concepts, this book quickly enables the reader to understand front-line research papers. It describes the principles of the electrophoresis of nucleic acids through agarose and polyacrylamide gels without resort to complicated protocols and recipes.
Integrates the latest advances in polysaccharide chemistry and structure analysis, with the practical applications of polysaccharides in medicine and pharmacy, highlighting the role of glycoconjugates in basic biological processes and immunology. It also presents recent developments in glycobiology and glycopathology. The work covers bacterial, fungal and cell-wall polysaccharides, microbial and bacterial exopolysaccharides, industrial gums, the biosynthesis of bacterial polysaccharides, and the production of microbial polysaccharides.
There is increasing recognition of the diversity and biological importance of lipids. Lipid modifications of other biological molecules are now also the subject of intense research activity. This 'user-friendly' introduction describes the techniques curre
This first-of-its-kind publication reviews the most impor-tant literature on the synthesis, properties, and applications of telechelic polymers. Written by a group of internationally known ex-perts in the field, this text contains a review table which allows the reader to search for given polymers with given end groups. Over 1,250 references are listed, covering primary and review articles as well as patents. Chapters include the preparation of telechelics by stepwise polymerization, anionic polymerization, radical polymer-ization, cationic polymerization, ring-opening polymerization and controlled polymer degradation. Polyols for the polyurethane pro-duction are described, as well as halato-telechelic polymers. Also, a more theoretical contribution on the physical properties of net-works formed from telechelic polymers is provided.
A gathering of leading experts in the field of high temperature polymers unite in this exciting compilation to discuss applications and marketing projections in this ever-expanding field. The authors represent a diverse group of academicians, industrial researchers, consultants, managers, and marketing forecasters and present a broad-based view of polymer technology. Topics include: liquid crystalline polymers; high temperature polyimides; heat-resistant engineering polymers; and high temperature organic polymers, including their chemistry and key functional properties in moldings, films, fibers, and coatings, as well as applications in electronics, packaging, and friction/wear. This is an essential source of data on high temperature polymers.
There are a number of methods used to synthetically prepare biopolymers, their models, and bioanalogous polymers. This work approaches the syntheses of the three major groups of biopolymers existing in nature - polypeptides, polysaccharides, and nucleic and teichoic acids - by ring-opening polymerization. Until now, this method has never been reviewed uniformly for these three groups. The majority of models prepared by ring-opening polymerization can not reach the complexity of the actual biological molecules. However, a better understanding of these biopolymers will aid in the use of such molecules in several fields of application in research and other high technologies, where they mimic functions of related biopolymers in living organisms.
The object of this book is to review and to discuss some important applications of polymers in electronics. The first three chapters discuss the current primary applications of polymers in semiconductor device manufacturing: polymers as resist materials for integrated circuit fabrication, polyimides as electronics packaging materials, and polymers as integrated circuits encapsulates.
This book overviews methods for the synthesis of metal-containing monomers with various types of metal bonds to the organic moiety of the molecule, such as ionic, covalent, donor-acceptor, and others. Published data on homopolymerization, copolymerization, and graft polymerization of these monomers are generalized. Synthesis and Polymerization of Metal-Containing Monomers discusses features typical of the molecular and structural organization of the resulting metal-containing polymers, their properties and the associated major applications, such as catalytical and biological activity, electrophysical characteristics, and thermal resistance.
From Polymers to Colloids: Engineering the Dynamic Properties of
Hairy Particles, by D. Vlassopoulos and G. Fytas
Omitting complicated chemistry concepts, Polyurethane Casting Primer presents practical details on the casting of polyurethane products to assist readers in their daily work. It covers fundamental methods, explores hands-on design and production topics, and keeps theory to a minimum. The book fully explains casting and allied processes. Starting from a "bucket and paddle mix" open pour, postcuring machining, bonding, and painting, it discusses how to produce quality products continuously. The author describes the necessary precautions for maintaining the health and safety of workers. He covers the properties of polyurethane systems, the tests and results of polyurethanes commonly used in compression, and the correct grade and processing of polyurethanes for meeting customer requirements. He also reveals how to fix issues such as molding problems and premature end of life. The versatility of polyurethane enables a wide range of applications, from simple, noncritical parts to vital engineering products. This book guides manufacturers in designing and producing polyurethane products. Batch calculations are available for download at www.crcpress.com
Food macromolecules play a crucial role in the formulation of a wide range of food products such as beverages, bread, cheese, dressings, desserts, ice-cream, and spreads. This book presents the very latest research in the area and is unique in covering both proteins and polysaccharides in the same volume. Specifically it describes recent experimental and theoretical macromolecules in solutions, suspensions, gels, glasses, emulsions and foams. Food Macromolecules and Colloids takes a fundamental approach to complex systems, providing an understanding of the physico-chemical role of macromolecular interactions in controlling the behaviour of real and model food colloids. It gives special attention to adsorbed protein layers, the stability of emulsions and foams, and the viscoelasticity and phase behaviour of mixed polysaccharide systems, as well as to the rheology and microstructure of biopolymer gels, and the interaction of proteins with lipids and aroma compounds. This attractive, typeset publication gives exceptionally broad international coverage of the subject and will make interesting reading for postgraduates, lecturers and researchers with interests in food science, surface and colloid science and polymer science.
This book examines methods particularly well suited for either a- or b-C-glycoside formation. It helps field workers quickly select the best method for synthesizing a particular type of C-glycoside. The use of C-glycosides as synthons in natural product synthesis is also addressed.
Processing of polymer nanocomposites usually requires special attention since the resultant structure-micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration. Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites. This book focuses heavily on the processing technologies and strategies and extensively addresses the processing-structure-property-performance relationships in a wide range of polymer nanocomposites, such as commodity polymers (chapter 1), engineering polymers (chapter 2), elastomers (chapter 3), thermosets (chapter 4), biopolymers (chapter 5), polymer blends (chapter 6), and electrospun polymer (chapter 7). The important role played by nanoparticles in polymer blends structures in particular is illustrated. The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists. |
You may like...
Research Anthology on Interventions in…
Information Resources Management Association
Hardcover
R7,245
Discovery Miles 72 450
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,292
Discovery Miles 32 920
Solid State Physics, Volume 66
Robert L Stamps, Robert E Camley
Hardcover
R6,191
Discovery Miles 61 910
|