![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This book presents the chemical properties of lignocellulosic fibers, knowledge of which is essential for innovation and sustainable development of their transformation. Thermochemical transformation of wood and other lignocellulosics is presented to highlight its volatile, liquid and solid products and their novel applications. Forest biorefinery is described to emphasize the new products from lignocellulosic constituents, both structural (cellulose, hemicelluloses and lignins) and those extraneous to cell walls-extractives. New developments in cellulose technology related to nanocellulose are discussed in relation to new applications. Industrial lignins are presented in detail, both in terms of extraction procedures from spent liquors and structural characterization of the isolated lignins. Application of lignocellulosic biopolymers in new composite materials, or in biomaterials for medicinal purposes, and in solid wood preservation, are described. The example of an industrial biorefinery installed in southwestern France more than 40 years ago is presented.
Principles of Polymer Science and Technology in Cosmetics and Personal Care
"Provides practical information on the application of capillary electrophoresis (CE) to protein analysis, with an emphasis on developing and optimizing CE techniques in the laboratory. Includes separation methods bases on mass, charge, isoelectric point, molecular sieving, and affinity interactions."
Poled polymers doped with nonlinear optically active chromophores combine the large second order nonlinearity of the dopant dye molecules with the optical quality of the polymer. The material design flexibility afforded to doped polymers makes them attractive in a large variety of devices and applications. This book addresses the critical science and technology issues in the development and application of poled polymers, with an emphasis on the stabilization of poled polymers and their special applications to second harmonic generation (SHG) and electro-optic (EO) devices.
Through its clear presentation of the basic concepts, this book quickly enables the reader to understand front-line research papers. It describes the principles of the electrophoresis of nucleic acids through agarose and polyacrylamide gels without resort to complicated protocols and recipes.
Integrates the latest advances in polysaccharide chemistry and structure analysis, with the practical applications of polysaccharides in medicine and pharmacy, highlighting the role of glycoconjugates in basic biological processes and immunology. It also presents recent developments in glycobiology and glycopathology. The work covers bacterial, fungal and cell-wall polysaccharides, microbial and bacterial exopolysaccharides, industrial gums, the biosynthesis of bacterial polysaccharides, and the production of microbial polysaccharides.
There is increasing recognition of the diversity and biological importance of lipids. Lipid modifications of other biological molecules are now also the subject of intense research activity. This 'user-friendly' introduction describes the techniques curre
Processing of polymer nanocomposites usually requires special attention since the resultant structure-micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration. Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites. This book focuses heavily on the processing technologies and strategies and extensively addresses the processing-structure-property-performance relationships in a wide range of polymer nanocomposites, such as commodity polymers (chapter 1), engineering polymers (chapter 2), elastomers (chapter 3), thermosets (chapter 4), biopolymers (chapter 5), polymer blends (chapter 6), and electrospun polymer (chapter 7). The important role played by nanoparticles in polymer blends structures in particular is illustrated. The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists.
This first-of-its-kind publication reviews the most impor-tant literature on the synthesis, properties, and applications of telechelic polymers. Written by a group of internationally known ex-perts in the field, this text contains a review table which allows the reader to search for given polymers with given end groups. Over 1,250 references are listed, covering primary and review articles as well as patents. Chapters include the preparation of telechelics by stepwise polymerization, anionic polymerization, radical polymer-ization, cationic polymerization, ring-opening polymerization and controlled polymer degradation. Polyols for the polyurethane pro-duction are described, as well as halato-telechelic polymers. Also, a more theoretical contribution on the physical properties of net-works formed from telechelic polymers is provided.
A gathering of leading experts in the field of high temperature polymers unite in this exciting compilation to discuss applications and marketing projections in this ever-expanding field. The authors represent a diverse group of academicians, industrial researchers, consultants, managers, and marketing forecasters and present a broad-based view of polymer technology. Topics include: liquid crystalline polymers; high temperature polyimides; heat-resistant engineering polymers; and high temperature organic polymers, including their chemistry and key functional properties in moldings, films, fibers, and coatings, as well as applications in electronics, packaging, and friction/wear. This is an essential source of data on high temperature polymers.
There are a number of methods used to synthetically prepare biopolymers, their models, and bioanalogous polymers. This work approaches the syntheses of the three major groups of biopolymers existing in nature - polypeptides, polysaccharides, and nucleic and teichoic acids - by ring-opening polymerization. Until now, this method has never been reviewed uniformly for these three groups. The majority of models prepared by ring-opening polymerization can not reach the complexity of the actual biological molecules. However, a better understanding of these biopolymers will aid in the use of such molecules in several fields of application in research and other high technologies, where they mimic functions of related biopolymers in living organisms.
The object of this book is to review and to discuss some important applications of polymers in electronics. The first three chapters discuss the current primary applications of polymers in semiconductor device manufacturing: polymers as resist materials for integrated circuit fabrication, polyimides as electronics packaging materials, and polymers as integrated circuits encapsulates.
This book overviews methods for the synthesis of metal-containing monomers with various types of metal bonds to the organic moiety of the molecule, such as ionic, covalent, donor-acceptor, and others. Published data on homopolymerization, copolymerization, and graft polymerization of these monomers are generalized. Synthesis and Polymerization of Metal-Containing Monomers discusses features typical of the molecular and structural organization of the resulting metal-containing polymers, their properties and the associated major applications, such as catalytical and biological activity, electrophysical characteristics, and thermal resistance.
From Polymers to Colloids: Engineering the Dynamic Properties of
Hairy Particles, by D. Vlassopoulos and G. Fytas
Omitting complicated chemistry concepts, Polyurethane Casting Primer presents practical details on the casting of polyurethane products to assist readers in their daily work. It covers fundamental methods, explores hands-on design and production topics, and keeps theory to a minimum. The book fully explains casting and allied processes. Starting from a "bucket and paddle mix" open pour, postcuring machining, bonding, and painting, it discusses how to produce quality products continuously. The author describes the necessary precautions for maintaining the health and safety of workers. He covers the properties of polyurethane systems, the tests and results of polyurethanes commonly used in compression, and the correct grade and processing of polyurethanes for meeting customer requirements. He also reveals how to fix issues such as molding problems and premature end of life. The versatility of polyurethane enables a wide range of applications, from simple, noncritical parts to vital engineering products. This book guides manufacturers in designing and producing polyurethane products. Batch calculations are available for download at www.crcpress.com
There are examples aplenty in the macroscopic world that demonstrate the form of objects directing their functions and properties. On the other hand, the fabrication of extremely small objects having precisely defined structures has only recently become an attractive challenge, which is now opening the door to nanoscience and nanotechnology.In the field of synthetic polymer chemistry, a number of critical breakthroughs have been achieved during the first decade of this century to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unprecedented properties and functions simply based on the form, i.e. topology, of polymer molecules.In this book on topological polymer chemistry, the important developments in this growing area will be collected for the first time, with particular emphasis on new conceptual insights for polymer chemistry and polymer materials. The book will systematically review topological polymer chemistry from basic aspects to practice, and give a broad overview of cyclic polymers covering new synthesis, structure characterization, basic properties/functions and the eventual applications.
This book examines methods particularly well suited for either a- or b-C-glycoside formation. It helps field workers quickly select the best method for synthesizing a particular type of C-glycoside. The use of C-glycosides as synthons in natural product synthesis is also addressed.
Flavonoids are a group of natural products isolated from a wide variety of plants, responsible for much of the natural colouring in vascular plants. A single plant may contain up to 50 different flavonoids, and the distribution of flavonoids within a plant family can yield useful classifying information about that family. Flavonoids exhibit a wide range of biological activity and currently are of particular interest in the pharmaceutical industry as potential anti-cancer agents. They find applications in the food industry as natural food colourings and in the analysis of wine, and as insect anti-feedants, which are used as natural insecticides in agrochemistry and crop protection.
Discussing the electrospinning process, the book covers in great depth the current research interest in nanoscience and nanotechnology, especially electrospinning of polymer nanofibers. The main distinction of the proposed book from others devoted to the electrospinning process is in the consideration of the problem in question from the physical point of view. Focusing on physical aspects, the book contains physical basics regarding the unique features of electrospun polymer nanofibers and the electrospinning resulting in fabrication of these nanofibers.
Interactions of Surfactants with Polymers and Proteins covers work done in this area over the last 30 years and examines in detail the physico-chemical, microstructural, and applications aspects of interactions of surfactants with polymers and proteins in bulk surfaces and at interfaces. The physical chemistry of individual components (surfactants, polymers, and proteins) is discussed, and extensive coverage of interactions of surfactants with uncharged, oppositely charged, and hydrophobe modified polymers is provided. Other topics addressed include water soluble and insoluble keratinous proteins, the principles and applications of fluorescence spectroscopy, the physical properties and microstructural aspects of polymer/protein-surfactant complexes, and implications of surfactant interactions with polymers and proteins in practical systems. Interactions of Surfactants with Polymers and Proteins provides a wealth of information for chemists involved in a number of different research areas, including cosmetics, pharmaceutics, foods, paints, pigments, lubrication, ceramics, minerals/materials processing, and biological systems.
The explosion of plastic material development continues to generate a proliferation of conversion processes and variants of these methods. Unfortunately, most books on plastics conversion focus on a single process, such as injection molding, limiting their usefulness to readers without prior knowledge of the field. Few, if any, single-source texts adequately describe and compare each of the plastic conversion processes together. Plastic Conversion Processes: A Concise and Applied Guide addresses that need. It provides a basic overview of each of the seven major conversion processes, which account for the creation of more than 97 percent of all plastics products today. This detailed guide assembles and integrates the wealth of information scattered throughout various literature, to provide a basic yet complete illustration of plastic conversion processes. Learn Methods to Compare, Evaluate, and Select the Best Process for Your Product This book is unique in that it employs an all-encompassing approach, offering more than a mere overview of basic theory and application related to each major process. Chapters begin with a process-attribute table to serve as a quick guide, and then briefly describe a particular conversion process. To ensure comprehensive understanding of each method and how it works, sections include a short history and detailed explanation of the particular equipment, tooling, and materials used, as well as general piece part design guidelines and case studies gleaned from real-life experience. There is a plastic term for every letter of the alphabet, making it one of the most complex fields in science. A "quick reference" section at the end of the book includes an exhaustive collection of more than 350 terms, definitions, acronyms, and a key process characteristics comparison chart. Supplemented with photos, diagrams, and illustrations t
Cellulose-Based Graft Copolymers: Structure and Chemistry discusses the synthesis, characterization, and properties of multifunctional cellulose-based graft copolymers. Presenting the contributions of accomplished experts in the field of natural cellulosic polymers, this authoritative text: Offers an overview of cutting-edge technical accomplishments in natural cellulose-based graft polymers Addresses a separate biomaterial in each chapter, exploring composition as well as graft copolymerization chemistry Covers fundamentals and applications including toxic ion removal, biomedical engineering, biofuels, micro/nano composites, papermaking, building materials, and defense Cellulose-Based Graft Copolymers: Structure and Chemistry tackles several critical issues and provides suggestions for future work, supplying deeper insight into the state of the art of advanced cellulose-based graft copolymers.
Polymer Thermodynamics: Blends, Copolymers and Reversible Polymerization describes the thermodynamic basis for miscibility as well as the mathematical models used to predict the compositional window of miscibility and construct temperature versus volume-fraction phase diagrams. The book covers the binary interaction model, the solubility parameter approach, and the entropic difference model. Using equation of state (EOS) theories, thermodynamic models, and information from physical properties, it illustrates the construction of phase envelopes. The book presents nine EOS theories, including some that take into account molecular weight effects. Characteristic values are given in tables. It uses the binary interaction model to predict the compositional window of miscibility for copolymer/homopolymer blends and blends of copolymers and terpolymers with common monomers. It discusses Hansen fractional solubility parameter values, six phase diagram types, the role of polymer architecture in phase behavior, and the mathematical framework for multiple glass transition temperatures found in partially miscible polymer blends. The author also illustrates biomedical and commercial applications of nanocomposites, the properties of various polymer alloys, Fick's laws of diffusion and their implications during transient events, and the use of the dynamic programming method in the sequence alignment of DNA and proteins. The final chapter reviews the thermodynamics of reversible polymerization and copolymerization. Polymer blends offer improved performance/cost ratios and the flexibility to tailor products to suit customers' needs. Exploring physical phenomena, such as phase separation, this book provides readers with methods to design polymer blends and predict the phase behavior of binary polymer blends using desktop computers.
This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids. Understanding nanosheets from chemical, structural, and application aspects in relation to their "fully nanoscopic" characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry of inorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed.
Armed Disarmed Effects in Carbohydrate Chemistry: History,
Synthetic and Mechanistic Studies, by Bert Fraser-Reid and J.
Cristobal Lopez |
You may like...
Real Property in Australia - Foundations…
Michael J. Hefferan
Paperback
R1,534
Discovery Miles 15 340
Computational Toxicology - Volume I
Brad Reisfeld, Arthur N. Mayeno
Hardcover
R5,308
Discovery Miles 53 080
|