Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This indispensable reference features the latest findings surrounding the physicochemical aspects of surfactant and polymer systems to facilitate the design and understanding of novel and advanced drug delivery formulations-highlighting the basics of surfactant and polymer surface activity and self-assembly, the various types of structures formed by such compounds, and how they may be used in drug delivery. Surfactants and Polymers in Drug Delivery discusses solubilization of drugs in micellar systems liquid crystalline phases formed by PEO-PPO-PEO block copolymers and other copolymers and surfactants triggered drug-release from liposome formulations microemulsions formed by ionic and nonionic surfactants microemulsions in oral and topical administration emulsions in parenteral, oral, and dermal drug delivery gels formed by polysaccharides, block copolymers, and polymer-surfactant mixtures chemically cross-linked gels responsive polymer systems in drug delivery experimental techniques for studying drug delivery systems drying of aqueous protein solutions, polymeric two-phase systems, emulsions, and liposomes bioadhesion With nearly 500 references, tables and figures, Surfactants and Polymers in Drug Delivery will benefit surface, pharmaceutical, colloid, polymer, and medicinal chemists; chemical, formulation, and application engineers; and pharmacists; and upper-level undergraduate and graduate students in these disciplines.
Research into plant biopolymers, their structural characteristics and related physicochemical and functional properties is of increasing significance in the modern world. This is particularly true in relation to sustainable agriculture, environmentally friendly processes and new technology requirements and safe products. This unique book reports on the very latest research on plant biopolymer science, from biosynthesis through to applications. It describes specifically developments in the study of the biosynthesis of macromolecules and biopolymer design, going on to model systems such as biopolymer assemblies, interfaces and interphases. Finally, a discussion of multiphasic systems shows how these concepts may be extended to everyday applications. With contributions drawn from the international scientific community, Plant Biopolymer Science: Food and Non-Food Applications provides an overview of the state-of-the-art for a variety of readers, which will include students, researchers and teachers in academia to professionals in industry and government agencies.
Polymeric Bionanocomposites as Promising Materials for Controlled Drug, by M. Prabaharan, R. Jayakumar; Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, by R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jerome, and V. Preat; Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds, by P. K. Dutta, K. Rinki and J. Dutta; Chitosan-Based Biomaterials for Tissue Repair and Regeneration, by X. Liu, L. Ma, Z. Mao and C. Gao; Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications, by M. R. Leedy, H. J. Martin, P. A. Norowski, J. A. Jennings, W. O. Haggard, and J.D. Bumgardner; New Techniques for Optimization of Surface Area and Porosity in Nanochitins and Nanochitosans, by R. A. A. Muzzarelli; Production, Properties and Applications of Fungal Cell Wall Polysaccharides: Chitosan and Glucan, by N. New, T. Furuike, and H. Tamura;"
Cold hibernated elastic memory (CHEM) is an innovative, smart material technology that uses shape memory polymers in open cellular structures. This book extensively describes CHEM self-deployable structures, provides basic property data and characteristics, discusses advantages, and identifies numerous space, commercial, and medical applications. Some of these applications have been experimentally and analytically investigated with inspiring results and are revealed here. CHEM technology has a potential to provide groundbreaking self-deployable space structures. Some cutting-edge space CHEM concepts described in this book represent the introduction of a new generation of space deployable structures. CHEM materials have unique characteristics that enable the manufacture of self-deployable stents and other medical devices not possible currently. One of the medical applications, the CHEM endovascular treatment of aneurysm, is being experimentally explored with promising results that would save lives. This book provides a long list of interesting potential commercial CHEM applications that could simplify and make life easier at low cost. One of these products, the self-reconfiguring armchair, is already being set up for mass production. This book will be of interest to all engineering researchers, scientists, engineers, students, designers, and technologists across their relevant fields of interest. The exceptional characteristics of CHEM technology are presently enabling technologists to develop many applications ranging from outer space to inside the human body. As a result, CHEM structures are in the process of reshaping our thinking, approaches, and design methods in many ways that conventional materials and approaches do not allow.
Many books offer coverage of the current work of top researchers, but rarely is any attempt made to look beyond the present day. "Emerging Themes in Polymer Science" is a unique book which not only documents the latest research but also provides an insight into the likely future of polymer science. At the heart of the debate, and a key feature of the book, is the relationship between polymer science and biology. Also discussed are polymer semiconductors and devices; polymer colloids; biomaterials; tissue engineering and polymers; neutron and synchrotron research; theory; and rheology.Anyone involved in polymer research, including those in the fields of electronics and nanotechnology, will welcome this book.
"Polymer Yearbook 17" brings together reviews and information on the progress of polymer science worldwide, including topical information such as a list of publications in polymer science and a compilation of dissertation abstracts. This volume includes reviews of key aspects of polymer science, including contributions from Russia, and details of important publications. This volume contains reviews on state-of-the-art Japanese research presented in the annual Spring and Fall meetings of the "Japanese Polymer Science Society". The aim of this section is to make information on the progress of Japanese polymer science, and on topics of interest to polymer scientists in Japan, more easily available worldwide.
This book presents the chemical properties of lignocellulosic fibers, knowledge of which is essential for innovation and sustainable development of their transformation. Thermochemical transformation of wood and other lignocellulosics is presented to highlight its volatile, liquid and solid products and their novel applications. Forest biorefinery is described to emphasize the new products from lignocellulosic constituents, both structural (cellulose, hemicelluloses and lignins) and those extraneous to cell walls-extractives. New developments in cellulose technology related to nanocellulose are discussed in relation to new applications. Industrial lignins are presented in detail, both in terms of extraction procedures from spent liquors and structural characterization of the isolated lignins. Application of lignocellulosic biopolymers in new composite materials, or in biomaterials for medicinal purposes, and in solid wood preservation, are described. The example of an industrial biorefinery installed in southwestern France more than 40 years ago is presented.
An assessment of the known properties of natural products and their model compounds to determine their usefulness in biological and medical experimentation, as well as in synkinetics - the reversible synthesis of noncovalent compounds. It explores new techniques such as cryoelectron and scanning force microscopy and solid-state NMR spectroscopy of membrane systems. There are 500 figures and reaction schemes.
Principles of Polymer Science and Technology in Cosmetics and Personal Care
Principles of Coordination Polymerisation, is one of the first books to offer a unified and almost complete view of coordination polymerisation. It focuses on the polymerisation of monomers, belonging to all the important classes of hydrocarbons and non-hydrocarbon monomers, in the presence of various kinds of coordination catalysts. Taking a user-friendly approach the book examines how the catalyst is involved in each step of the monomer coordination polymerisation process and presents:
Written by a polymer and organometallic scientist with over 30 years experience of monomer polymerisation, this book will be essential reading for graduate researchers studying polymer science and all research scientists in the plastics and rubber industries.
"Provides practical information on the application of capillary electrophoresis (CE) to protein analysis, with an emphasis on developing and optimizing CE techniques in the laboratory. Includes separation methods bases on mass, charge, isoelectric point, molecular sieving, and affinity interactions."
This text provides a uniform and consistent approach to diversified
problems encountered in the study of dynamical processes in
condensed phase molecular systems. Given the broad
interdisciplinary aspect of this subject, the book focuses on three
themes: coverage of needed background material, in-depth
introduction of methodologies, and analysis of several key
applications. The uniform approach and common language used in all
discussions help to develop general understanding and insight on
condensed phases chemical dynamics. The applications discussed are
among the most fundamental processes that underlie physical,
chemical and biological phenomena in complex systems.
Poled polymers doped with nonlinear optically active chromophores combine the large second order nonlinearity of the dopant dye molecules with the optical quality of the polymer. The material design flexibility afforded to doped polymers makes them attractive in a large variety of devices and applications. This book addresses the critical science and technology issues in the development and application of poled polymers, with an emphasis on the stabilization of poled polymers and their special applications to second harmonic generation (SHG) and electro-optic (EO) devices.
A practical handbook rather than merely a chemistry reference, Szycher's Handbook of Polyurethanes, Second Edition offers an easy-to-follow compilation of crucial new information on polyurethane technology, which is irreplaceable in a wide range of applications. This new edition of a bestseller is an invaluable reference for technologists, marketers, suppliers, and academicians who require cutting-edge, commercially valuable data on the most advanced uses for polyurethane, one of the most important and complex specialty polymers. internationally recognized expert Dr. Michael Szycher updates his bestselling industry "bible" With seven entirely new chapters and five that are revised and updated, this book summarizes vital contents from U.S. patent literature-one of the most comprehensive sources of up-to-date technical information. These patents illustrate the most useful technology discovered by corporations, universities, and independent inventors. Because of the wealth of information they contain, this handbook features many full-text patents, which are carefully selected to best illustrate the complex principles involved in polyurethane chemistry and technology. Features of this landmark reference include: Hundreds of practical formulations Discussion of the polyurethane history, key terms, and commercial importance An in-depth survey of patent literature Useful stoichiometric calculations The latest "green" chemistry applications A complete assessment of medical-grade polyurethane technology Not biased toward any one supplier's expertise, this special reference uses a simplified language and layout and provides extensive study questions after each chapter. It presents rich technical and historical descriptions of all major polyurethanes and updated sections on medical and biological applications. These features help readers better understand developmental, chemical, application, and commercial aspects of the subject.
A gathering of leading experts in the field of high temperature polymers unite in this exciting compilation to discuss applications and marketing projections in this ever-expanding field. The authors represent a diverse group of academicians, industrial researchers, consultants, managers, and marketing forecasters and present a broad-based view of polymer technology. Topics include: liquid crystalline polymers; high temperature polyimides; heat-resistant engineering polymers; and high temperature organic polymers, including their chemistry and key functional properties in moldings, films, fibers, and coatings, as well as applications in electronics, packaging, and friction/wear. This is an essential source of data on high temperature polymers.
Interactions of Surfactants with Polymers and Proteins covers work done in this area over the last 30 years and examines in detail the physico-chemical, microstructural, and applications aspects of interactions of surfactants with polymers and proteins in bulk surfaces and at interfaces. The physical chemistry of individual components (surfactants, polymers, and proteins) is discussed, and extensive coverage of interactions of surfactants with uncharged, oppositely charged, and hydrophobe modified polymers is provided. Other topics addressed include water soluble and insoluble keratinous proteins, the principles and applications of fluorescence spectroscopy, the physical properties and microstructural aspects of polymer/protein-surfactant complexes, and implications of surfactant interactions with polymers and proteins in practical systems. Interactions of Surfactants with Polymers and Proteins provides a wealth of information for chemists involved in a number of different research areas, including cosmetics, pharmaceutics, foods, paints, pigments, lubrication, ceramics, minerals/materials processing, and biological systems.
Integrates the latest advances in polysaccharide chemistry and structure analysis, with the practical applications of polysaccharides in medicine and pharmacy, highlighting the role of glycoconjugates in basic biological processes and immunology. It also presents recent developments in glycobiology and glycopathology. The work covers bacterial, fungal and cell-wall polysaccharides, microbial and bacterial exopolysaccharides, industrial gums, the biosynthesis of bacterial polysaccharides, and the production of microbial polysaccharides.
Through its clear presentation of the basic concepts, this book quickly enables the reader to understand front-line research papers. It describes the principles of the electrophoresis of nucleic acids through agarose and polyacrylamide gels without resort to complicated protocols and recipes.
There is increasing recognition of the diversity and biological importance of lipids. Lipid modifications of other biological molecules are now also the subject of intense research activity. This 'user-friendly' introduction describes the techniques curre
The explosion of plastic material development continues to generate a proliferation of conversion processes and variants of these methods. Unfortunately, most books on plastics conversion focus on a single process, such as injection molding, limiting their usefulness to readers without prior knowledge of the field. Few, if any, single-source texts adequately describe and compare each of the plastic conversion processes together. Plastic Conversion Processes: A Concise and Applied Guide addresses that need. It provides a basic overview of each of the seven major conversion processes, which account for the creation of more than 97 percent of all plastics products today. This detailed guide assembles and integrates the wealth of information scattered throughout various literature, to provide a basic yet complete illustration of plastic conversion processes. Learn Methods to Compare, Evaluate, and Select the Best Process for Your Product This book is unique in that it employs an all-encompassing approach, offering more than a mere overview of basic theory and application related to each major process. Chapters begin with a process-attribute table to serve as a quick guide, and then briefly describe a particular conversion process. To ensure comprehensive understanding of each method and how it works, sections include a short history and detailed explanation of the particular equipment, tooling, and materials used, as well as general piece part design guidelines and case studies gleaned from real-life experience. There is a plastic term for every letter of the alphabet, making it one of the most complex fields in science. A "quick reference" section at the end of the book includes an exhaustive collection of more than 350 terms, definitions, acronyms, and a key process characteristics comparison chart. Supplemented with photos, diagrams, and illustrations t
Omitting complicated chemistry concepts, Polyurethane Casting Primer presents practical details on the casting of polyurethane products to assist readers in their daily work. It covers fundamental methods, explores hands-on design and production topics, and keeps theory to a minimum. The book fully explains casting and allied processes. Starting from a "bucket and paddle mix" open pour, postcuring machining, bonding, and painting, it discusses how to produce quality products continuously. The author describes the necessary precautions for maintaining the health and safety of workers. He covers the properties of polyurethane systems, the tests and results of polyurethanes commonly used in compression, and the correct grade and processing of polyurethanes for meeting customer requirements. He also reveals how to fix issues such as molding problems and premature end of life. The versatility of polyurethane enables a wide range of applications, from simple, noncritical parts to vital engineering products. This book guides manufacturers in designing and producing polyurethane products. Batch calculations are available for download at www.crcpress.com
Cellulose-Based Graft Copolymers: Structure and Chemistry discusses the synthesis, characterization, and properties of multifunctional cellulose-based graft copolymers. Presenting the contributions of accomplished experts in the field of natural cellulosic polymers, this authoritative text: Offers an overview of cutting-edge technical accomplishments in natural cellulose-based graft polymers Addresses a separate biomaterial in each chapter, exploring composition as well as graft copolymerization chemistry Covers fundamentals and applications including toxic ion removal, biomedical engineering, biofuels, micro/nano composites, papermaking, building materials, and defense Cellulose-Based Graft Copolymers: Structure and Chemistry tackles several critical issues and provides suggestions for future work, supplying deeper insight into the state of the art of advanced cellulose-based graft copolymers.
Discussing the electrospinning process, the book covers in great depth the current research interest in nanoscience and nanotechnology, especially electrospinning of polymer nanofibers. The main distinction of the proposed book from others devoted to the electrospinning process is in the consideration of the problem in question from the physical point of view. Focusing on physical aspects, the book contains physical basics regarding the unique features of electrospun polymer nanofibers and the electrospinning resulting in fabrication of these nanofibers.
Making Flory-Huggins Practical: Thermodynamics of
Polymer-Containing Mixtures, by B. A. Wolf
From Polymers to Colloids: Engineering the Dynamic Properties of
Hairy Particles, by D. Vlassopoulos and G. Fytas |
You may like...
Starch - Evolution and Recent Advances
Martins Ochubiojo Emeje
Hardcover
Epoxy-Based Composites
Samson Jerold Samuel Chelladurai, Ramesh Arthanari, …
Hardcover
Cellulose Solvents: For Analysis…
Tim Liebert, Thomas Heinze, …
Hardcover
R6,685
Discovery Miles 66 850
Controlled/Living Radical Polymerization
Krzysztof Matyjaszewski
Hardcover
R2,958
Discovery Miles 29 580
Polymer-Inorganic Nanostructured…
Kostyantyn M. Sukhyy, Elena A. Belyanovskaya
Hardcover
R6,737
Discovery Miles 67 370
Progress in Controlled Radical…
Krzysztof Matyjaszewski, Brent Sumerlin, …
Hardcover
R5,779
Discovery Miles 57 790
Materials, Chemicals and Energy from…
Dimitris S. Argyropoulos
Hardcover
R6,974
Discovery Miles 69 740
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
|