![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science.
This volume explores the latest developments in the area of polymer electrolyte membranes (PEMs) used for high-temperature fuel cells. Featuring contributions from an international array of researchers, it presents a unified viewpoint on the operating principles of fuel cells, various methodologies used for the fabrication of PEMs, and issues related to the chemical and mechanical stabilities of the membranes. Special attention is given to the fabrication of electrospun nanocomposite membranes. The editors have consciously placed an emphasis on developments in the area of fast-growing and promising PEM materials obtained via hygroscopic inorganic fillers, solid proton conductors, heterocyclic solvents, ionic liquids, anhydrous H3PO4 blends, and heteropolyacids. This book is intended for fuel cell researchers and students who are interested in a deeper understanding of the organic-inorganic membranes used in fuel cells, membrane fabrication methodologies, properties and clean energy applications.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Lipid Glossary 2 is a handy reference for a wide range of lipid
scientists and technologists, as well as for those involved in the
trading of these materials.
The book summarizes recent international research and experimental developments regarding fatigue crack growth investigations of rubber materials. It shows the progress in fundamental as well as advanced research of fracture investigation of rubber material under fatigue loading conditions, especially from the experimental point of view. However, some chapters will describe the progress in numerical modeling and physical description of fracture mechanics and cavitation phenomena in rubbers. Initiation and propagation of cracks in rubber materials are dominant phenomena which determine the lifetime of these soft rubber materials and, as a consequence, the lifetime of the corresponding final rubber parts in various fields of application. Recently, these phenomena became of great scientific interest due to the development of new experimental methods, concepts and models. Furthermore, crack phenomena have an extraordinary impact on rubber wear and abrasion of automotive tires; and understanding of crack initiation and growth in rubbers will help to support the growthing number of activities and worldwide efforts of reduction of tire wear losses and abrasion based emissions.
In this volume, inorganic, organic, and bioorganic chemistry are
represented in contributions from around the world. Pioneering work
in self-assembled structures organized by the use of transition
metals is described in chapter 1, followed by details of extensive
studies of self-assembled structures formed from various
biomolecules in chapter 2. The next two chapters describe the
formation of spherical molecular containers and their understanding
of such structures based on Platonic and Archimedean solids, and
the fascinating family of synthetic peptide receptors and the
interactions that can be explored using these host molecules. In
chapter 5 a mixture of computational chemistry, drug design, and
synthetic organic and inorganic chemistry in the development of
superoxide dismutase mimics is described. The final two chapters
discuss the bioorganic and supramolecular principles required for
the design of synthetic artificial enzymes, and the supramolecular
self-assembly and its possible role in the origin of life.
Since its inception in 1945, this serial has provided critical and integrating articles written by research specialists that integrate industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology in the study of carbohydrates. The articles provide a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.
Designed for easy use by both beginning and experienced protein
crystallographers, the second edition of Practical Protein
Crystallography is an essential handbook for any scientist
interested in solving a protein structure. The book includes
examples of actual experiments and data, electron density maps, and
computer methods. This second edition has new material covering
CCP4, SHELX, cryocrystallography, MAD and automated fitting.
This book discusses the recent innovations in the development of various advanced biopolymeric systems, including gels, in situ gels, hydrogels, interpenetrating polymer networks (IPNs), polyelectrolyte complexes (PECs), graft co-polymers, stimuli-responsive polymers, polymeric nanoparticles, nanocomposites, polymeric micelles, dendrimers, liposomes and scaffolds. It also examines their applications in drug delivery.
The current volume covers a host of topics in organic synthesis, photo- / radiation-chemistry, electron donor-acceptor interaction, supramolecular chemistry and photovoltaics. It provides a unique forum for expounding and discussing the latest developments in these important disciplines of "Fullerene Research." The selected examples, described in this comprehensive and one-of-a-kind resource, will illustrate the continuing interest and potential of fullerenes as multifunctional moieties in well-ordered multicomponent composites. In view of the novelty and the various areas involved, the composed monographs are of interest for condensed matter physicists; materials scientists; electrochemists; biochemists; solid-state, physical, organic, inorganic, and theoretical chemists; chemical, electrical, and optical engineers; and upper-level undergraduate and graduate students in these disciplines.
At present, three-dimensional free-radical polymerization (TFRP) is a special ?eld of radical polymerization. TFRP is characterized by speci?c kinetic regularities and mechanisms of processes for the formation of cross-linked or hyper-branched po- mers, and they are different from the kinetics and mechanism of classical radical polymerization. The fundamental studies of kinetics and mechanism of TFRP with formation of cross-linked polymers have been carried out in three stages. The ?rst stage lasted from 1960 until 1983, and the main mechanisms of TFRP of oligo(acrylates) were established during this stage [1-3]. Condensation telomerization, being a universal oligo(acrylate) synthesis procedure, allows us to vary certain molecular parameters, such as length and ?exibility of oligomeric blocks, number and type of reactive groups (methacrylic or acrylic groups), and chemical nature of atomic groups of an oligomeric block, which represent the centers of strong intermolecular interactions. For this reason, oligo(acrylates) were very convenient compounds for establi- ing the main kinetic regularities of TFRP and regularities of formation of polymer three-dimensional cross-linkedstructures,according totheso-calledmicrohetero- neous mechanism (G.V. Korolev, 1977), at the topological and morphological levels.
Cyclic Polymers (Second Edition) reviews the many recent advances in this rapidly expanding subject since the publication of the first edition in 1986. The preparation, characterisation, properties and applications of a wide range of organic and inorganic cyclic oligomers and polymers are described in detail, together with many examples of catenanes and rotaxanes. The importance of large cyclics in biological chemistry and molecular biology is emphasised by a wide coverage of circular DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Experimental techniques and theoretical aspects of cyclic polymers are included, as well as examples of their uses such as ring opening polymerisation reactions to give commercially important materials. This book covers a wide range of topics which should be of interest to many scientific research workers (for example, in polymer science, chemistry and molecular biology), as well as providing a reference text for undergraduate and graduate students.
Historical Overview of (Mini)emulsion Polymerizations and
Preparation of Hybrid Latex Particles, by A.M. van Herk;
The chemistry and biochemistry of carbohydrates have become key research areas throughout the world. Responding to the enormous interest expressed in these fields, this new book has brought together a range of contributors, each working at the forefront of carbohydrate chemistry and biochemistry to provide concise authoritative and timely review of these exciting areas. Aimed at chemists, biochemists and biologists, the reader will find this book an invaluable introduction to and review of the most important developments in carbohydrate chemistry. As a distinct chemical group, the carbohydrates comprising mono-, oligo-, and polysaccharides and their derivatives are the most abundant group of natural products. From simple monosaccharides produced in photosynthesis to polysaccharides built in complex biochemical reactions, carbohydrates are produced in huge quantities by plant and animal life. Apart from dietary and structural uses in plants and animals, it is now well established that carbohydrates play a number of key roles in living systems. From cell-cell recognition to hormonal activities, carbohydrates are implicated in a wide range of cellular processes. This new understanding has forced the study of carbohydrates to the forefront of modern chemical research. For example, the nature of the role of carbohydrates in living systems offers the potential to provide important lead compounds in the development of new bioactive molecules. Similarly, the relative abundance of carbohydrates is prompting research aimed at utilizing simple monosaccharides as starting materials for a range of high value chemical product, offering a renewable alternative to current starting materials.
Volume 13 of this series presents five timely reviews of research
on alkaloids such as new developments in the chemistry and biology
of alkaloids from amphibian skins. It provides a synopsis and
tabulation of the hundreds of alkaloids that have been detected,
with an emphasis on occurrence, structure, dietary origins, and
biological activity.
This thesis provides essential information on the systematic design of assembled lanthanide complexes for functional luminescent materials. It discusses the relationships between assembled structures and photo, thermal, and mechanical properties on the basis of crystallography, spectroscopy, and thermodynamics. The described guidelines for assembled structures will be extremely valuable, both for industrial applications and for readers' fundamental understanding of solid-state photophysics and materials chemistry. Luminescent lanthanide complexes are promising candidates for lighting devices, lasers, and bio-probes owing to their line-like and long-lived emission arising from characteristic 4f-4f transitions. Low-vibrational and asymmetrical coordination structures around lanthanide ions have been introduced to achieve strong luminescence, using specific organic ligands. Recently, assembled lanthanide complexes including coordination polymers and metal organic frameworks have increasingly attracted attention as a new class of luminescent materials offering thermal stability and color tunability. However, improving the luminescence efficiencies of these compounds remains a challenge, and specific molecular designs to control assembled structures and yield additional physical properties have not been established. The author provides a group of bent-angled bridging ligands to boost photoluminescence efficiency, and successfully introduces for the first time glass formability and strong triboluminescence properties.
Principles of Coordination Polymerisation, is one of the first books to offer a unified and almost complete view of coordination polymerisation. It focuses on the polymerisation of monomers, belonging to all the important classes of hydrocarbons and non-hydrocarbon monomers, in the presence of various kinds of coordination catalysts. Taking a user-friendly approach the book examines how the catalyst is involved in each step of the monomer coordination polymerisation process and presents:
Written by a polymer and organometallic scientist with over 30 years experience of monomer polymerisation, this book will be essential reading for graduate researchers studying polymer science and all research scientists in the plastics and rubber industries.
Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide, by Donald J. Darensbourg.- Material Properties of Poly(Propylene Carbonates), by Gerrit. A. Luinstra and Endres Borchardt.- Poly(3-Hydroxybutyrate) from Carbon Monoxide, by Robert Reichardt and Bernhard Rieger. - Ecoflex(r) and Ecovio(r): Biodegradable, Performance-Enabling Plastics, by K. O. Siegenthaler, A. Kunkel, G. Skupin and M. Yamamoto.- Biodegradability of Poly(Vinyl Acetate) and Related Polymers, by Manfred Amann and Oliver Minge.- Recent Developments in Ring-Opening Polymerization of Lactones, by P. Lecomte and C. Jerome.- Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide), by Saikat Dutta, Wen-Chou Hung, Bor-Hunn Huang and Chu-Chieh Lin.- Bionolle (Polybutylenesuccinate), by Yasushi Ichikawa, Tatsuya Mizukoshi.- Polyurethanes from Renewable Resources, by David A. Babb.-"
This book shows how chemical modifications influence some properties of wood nanocomposites. It describes suitable and effective chemical modifications that strengthen the physico-mechanical, thermal and morphological properties of wood. The authors provide intuitive explanation of the various types of chemical modifications applied to polymer cell walls in wood. They emphasize the reaction changes in wood cell walls due to the chemical modifications. Increased mechanical strength, improved thermal stability as well as the efficient retardancy against fungi attack are described. This book concludes summarizing the potential applications of wood-based nanocomposites taking into account sustainability and economic aspects.
Table of Contents -Shape-Memory Polymers and Shape-Changing Polymers By M. Behl, J. Zotzmann, and A. Lendlein -Shape-Memory Polymer Composites By Samy A. Madbouly and Andreas Lendlein -Characterization Methods for Shape-Memory Polymers By W. Wagermaier, K. Kratz, M. Heuchel, and A. Lendlein -Shape-Memory Polymers for Biomedical Applications By Christopher M. Yakacki and Ken Gall -Controlled Drug Release from Biodegradable Shape-Memory Polymers By ChristianWischke, Axel T. Neffe, and Andreas Lendlein
In this thesis, the author introduces various bio-inspired smart nanochannel systems. A strategy for design and preparation of novel artificial responsive symmetric/asymmetric single nanochannel systems under various symmetric/asymmetric stimuli is presented for the first time. The author's research work utilizes ion track etching polymer nanochannels with different shapes as examples to demonstrate the feasibility of the design strategy for building novel artificial functional nanochannels using various symmetric/asymmetric physicochemical modifications. The development of these nanochannels and their potential applications is a burgeoning new area of research, and a number of exciting breakthroughs may be anticipated in the near future from the concepts and results reported in this thesis. Research into artificial functional nanochannels continues to drive new developments of various real-world applications, such as biosensors, energy conversion systems and nanofluidic devices. The work in this thesis has led to more than 15 publications in high-profile journals.
Volume A of Handbook of Polymer Nanocomposites deals with Layered Silicates. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields
This multi-authored book provides a comprehensive overview of the latest developments in porous CO2 capture materials, including ionic liquid derived carbonaceous adsorbents, porous carbons, metal-organic frameworks, porous aromatic frameworks, micro porous organic polymers. It also reviews the sorption techniques such as cyclic uptake and desorption reactions and membrane separations. In each category, the design and fabrication, the comprehensive characterization, the evaluation of CO2 sorption/separation and the sorption/degradation mechanism are highlighted. In addition, the advantages and remaining challenges as well as future perspectives for each porous material are covered. This book is aimed at scientists and graduate students in such fields as separation, carbon, polymer, chemistry, material science and technology, who will use and appreciate this information source in their research. Other specialists may consult specific chapters to find the latest, authoritative reviews. Dr. An-Hui Lu is a Professor at the State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, China. Dr. Sheng Dai is a Corporate Fellow and Group Leader in the Chemical Sciences Division at Oak Ridge National Laboratory (ORNL) and a Professor of Chemistry at the University of Tennessee, USA."
The two special volumes of Advances in Polymer Science entitled "Polymers for Photonics Applications" provide authoritative and critical reviews of up-to-date research and advances in various fields of photonic polymers as well as their promising applications. Eight articles contributed by internationally recognized scientists are concerned with polymers for second- and third-order nonlinear optics, quadratic parametric interactions in polymer waveguides, electroluminescent polymers for light sources, photoreflective polymers for holographic information storage, and highly efficient two-photon absorbing organics and polymers, including their applications. This review should provide individuals working in the field of photonic polymers with invaluable scientific knowledge on the state of the art while giving directions for future research to those deeply interested. |
![]() ![]() You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
Sex Hormones and Immunity to Infection
Sabra L. Klein, Craig Roberts
Hardcover
R7,242
Discovery Miles 72 420
|