I. Algebraic Varieties in a Projective Space.- I. Fundamental
Concepts.- 1. Plane Algebraic Curves.- 1. Rational Curves.- 2.
Connections with the Theory of Fields.- 3. Birational Isomorphism
of Curves.- Exercises.- 2. Closed Subsets of Affine Spaces.- 1.
Definition of Closed Subset.- 2. Regular Functions on a Closed
Set.- 3. Regular Mappings.- Exercises.- 3. Rational Functions.- 1.
Irreducible Sets.- 2. Rational Functions.- 3. Rational Mappings.-
Exercises.- 4. Quasiprojective Varieties.- 1. Closed Subsets of a
Projective Space.- 2. Regular Functions.- 3. Rational Functions.-
4. Examples of Regular Mappings.- Exercises.- 5. Products and
Mappings of Quasiprojective Varieties.- 1. Products.- 2. Closure of
the Image of a Projective Variety.- 3. Finite Mappings.- 4.
Normalization Theorem.- Exercises.- 6. Dimension.- 1. Definition of
Dimension.- 2. Dimension of an Intersection with a Hypersurface.-
3. A Theorem on the Dimension of Fibres.- 4. Lines on Surfaces.- 5.
The Chow Coordinates of a Projective Variety.- Exercises.- II.
Local Properties.- 1. Simple and Singular Points.- 1. The Local
Ring of a Point.- 2. The Tangent Space.- 3. Invariance of the
Tangent Space.- 4. Singular Points.- 5. The Tangent Cone.-
Exercises.- 2. Expansion in Power Series.- 1. Local Parameters at a
Point.- 2. Expansion in Power Series.- 3. Varieties over the Field
of Real and the Field of Complex Numbers 88 Exercises.- 3.
Properties of Simple Points.- 1. Subvarieties of Codimension 1.- 2.
Smooth Subvarieties.- 3. Factorization in the Local Ring of a
Simple Point.- Exercises.- 4. The Structure of Birational
Isomorphisms.- 1. The ?-Process in a Projective Space.- 2. The
Local ?-Process.- 3. Behaviour of Subvarieties under a ?-Process.-
4. Exceptional Subvarieties.- 5. Isomorphism and Birational
Isomorphism.- Exercises.- 5. Normal Varieties.- 1. Normality.- 2.
Normalization of Affine Varieties.- 3. Ramification.- 4.
Normalization of Curves.- 5. Projective Embeddings of Smooth
Varieties.- Exercises.- III. Divisors and Differential Forms.- 1.
Divisors.- 1. Divisor of a Function.- 2. Locally Principal
Divisors.- 3. How to Shift the Support of a Divisor Away from
Points.- 4. Divisors and Rational Mappings.- 5. The Space
Associated with a Divisor.- Exercises.- 2. Divisors on Curves.- 1.
The Degree of a Divisor on a Curve.- 2. Bezout's Theorem on
Curves.- 3. Cubic Curves.- 4. The Dimension of a Divisor.-
Exercises.- 3. Algebraic Groups.- 1. Addition of Points on a Plane
Cubic Curve.- 2. Algebraic Groups.- 3. Factor Groups. Chevalley's
Theorem.- 4. Abelian Varieties.- 5. Picard Varieties.- Exercises.-
4. Differential Forms.- 1. One-Dimensional Regular Differential
Forms.- 2. Algebraic Description of the Module of Differentials.-
3. Differential Forms of Higher Degrees.- 4. Rational Differential
Forms.- Exercises.- 5. Examples and Applications of Differential
Forms.- 1. Behaviour under Mappings.- 2. Invariant Differential
Forms on a Group.- 3. The Canonical Class.- 4. Hypersurfaces.- 5.
Hyperelliptic Curves.- 6. The Riemann-Roch Theorem for Curves.- 7.
Projective Immersions of Surfaces.- Exercises.- IV. Intersection
Indices.- 1. Definition and Basic Properties.- 1. Definition of an
Intersection Index.- 2. Additivity of the Intersection Index.- 3.
Invariance under Equivalence.- 4. End of the Proof of Invariance.-
5. General Definition of the Intersection Index.- Exercises.- 2.
Applications and Generalizations of Intersection Indices.- 1.
Bezout's Theorem in a Projective Space and Products of Projective
Spaces.- 2. Varieties over the Field of Real Numbers.- 3. The Genus
of a Smooth Curve on a Surface.- 4. The Ring of Classes of Cycles.-
Exercises.- 3. Birational Isomorphisms of Surfaces.- 1. ?-Processes
of Surfaces.- 2. Some Intersection Indices.- 3. Elimination of
Points of Indeterminacy.- 4. Decomposition into ?-Processes.- 5.
Notes and Examples.- Exercises.- II. Schemes and Varieties.- V.
Schemes.- 1. Spectra of
General
Imprint: |
Springer-Verlag
|
Country of origin: |
Germany |
Release date: |
June 1977 |
First published: |
1974 |
Translators: |
K.A. Hirsch
|
Authors: |
I.R. Shafarevich
|
Dimensions: |
235 x 155 x 23mm (L x W x T) |
Format: |
Paperback
|
Pages: |
440 |
Edition: |
1st ed. 1974. Rev. 3rd printing |
ISBN-13: |
978-3-540-08264-4 |
Categories: |
Books >
Science & Mathematics >
Mathematics >
General
Promotions
|
LSN: |
3-540-08264-6 |
Barcode: |
9783540082644 |
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!