Books > Science & Mathematics > Mathematics > Algebra
|
Buy Now
Algebraic Curves and Cryptography (Hardcover)
Loot Price: R2,544
Discovery Miles 25 440
|
|
Algebraic Curves and Cryptography (Hardcover)
Series: Fields Institute Monographs
Expected to ship within 12 - 19 working days
|
It is by now a well-known paradigm that public-key cryptosystems
can be built using finite Abelian groups and that algebraic
geometry provides a supply of such groups through Abelian varieties
over finite fields. Of special interest are the Abelian varieties
that are Jacobians of algebraic curves. All of the articles in this
volume are centered on the theme of point counting and explicit
arithmetic on the Jacobians of curves over finite fields. The
topics covered include Schoof's $\ell$-adic point counting
algorithm, the $p$-adic algorithms of Kedlaya and
Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$
curves and zeta functions. This volume is based on seminars on
algebraic curves and cryptography held at the GANITA Lab of the
University of Toronto during 2001-2008. The articles are mostly
suitable for independent study by graduate students who wish to
enter the field, both in terms of introducing basic material as
well as guiding them in the literature. The literature in
cryptography seems to be growing at an exponential rate. For a new
entrant into the subject, navigating through this ocean can seem
quite daunting. In this volume, the reader is steered toward a
discussion of a few key ideas of the subject, together with some
brief guidance for further reading. It is hoped that this approach
may render the subject more approachable. Titles in this series are
co-published with the Fields Institute for Research in Mathematical
Sciences (Toronto, Ontario, Canada).|It is by now a well-known
paradigm that public-key cryptosystems can be built using finite
Abelian groups and that algebraic geometry provides a supply of
such groups through Abelian varieties over finite fields. Of
special interest are the Abelian varieties that are Jacobians of
algebraic curves. All of the articles in this volume are centered
on the theme of point counting and explicit arithmetic on the
Jacobians of curves over finite fields. The topics covered include
Schoof's $\ell$-adic point counting algorithm, the $p$-adic
algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
the Jacobians of $C_{ab}$ curves and zeta functions. This volume is
based on seminars on algebraic curves and cryptography held at the
GANITA Lab of the University of Toronto during 2001-2008. The
articles are mostly suitable for independent study by graduate
students who wish to enter the field, both in terms of introducing
basic material as well as guiding them in the literature. The
literature in cryptography seems to be growing at an exponential
rate. For a new entrant into the subject, navigating through this
ocean can seem quite daunting. In this volume, the reader is
steered toward a discussion of a few key ideas of the subject,
together with some brief guidance for further reading. It is hoped
that this approach may render the subject more approachable. Titles
in this series are co-published with the Fields Institute for
Research in Mathematical Sciences (Toronto, Ontario, Canada).
General
Imprint: |
American Mathematical Society
|
Country of origin: |
United States |
Series: |
Fields Institute Monographs |
Release date: |
December 2010 |
Editors: |
V. Kumar Murty
|
Dimensions: |
229 x 152mm (L x W) |
Format: |
Hardcover
|
Pages: |
133 |
ISBN-13: |
978-0-8218-4311-6 |
Categories: |
Books >
Science & Mathematics >
Mathematics >
Algebra >
General
Promotions
|
LSN: |
0-8218-4311-7 |
Barcode: |
9780821843116 |
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
You might also like..
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.