Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.
The ends of a topological space are the directions in which it becomes noncompact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behavior at infinity of a noncompact space. The second part studies tame ends in topology. The authors show tame ends to have a uniform structure, with a periodic shift map. They use approximate fibrations to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. This book will appeal to researchers in topology and geometry.
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
The ends of a topological space are the directions in which it becomes noncompact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behavior at infinity of a noncompact space. The second part studies tame ends in topology. The authors show tame ends to have a uniform structure, with a periodic shift map. They use approximate fibrations to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. This book will appeal to researchers in topology and geometry.
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. The two volumes Novikov Conjectures, Index Theorems, and Rigidity are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) in September, 1993, on the subject of the title. They are intended to give a snapshot of the status of work on the Novikov Conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry, analysis. Volume 2 contains: fundamental long research papers on bounded K-theory and the assembly map in algebraic K-theory, and on Epsilon surgery theory; shorter research and survey papers on various topics related to the Novikov Conjecture.
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) in September 1993, on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'. They are intended to give a snapshot of the status of work on the Novikov Conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry and analysis. Volume 1 contains: * A detailed historical survey and bibliography of the Novikov Conjecture and of related subsequent developments, including an annotated reprint (both in the original Russian and in English translation) of Novikov's original 1970 statement of his conjecture * An annotated problem list * The texts of several important unpublished classic papers by Milnor, Browder, and Kasparov * Research/survey papers on the Novikov Conjecture by Ferry/Weinberger, Gromov, Mishchenko, Quinn, Ranicki, and Rosenberg.
This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra.
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors asked a variety of experts to report on the areas of current interest. This is the second of two volumes resulting from that collective effort. It will be useful to topologists, to other interested researchers, and to advanced students. The topics covered include current applications of surgery, Wall's finiteness obstruction, algebraic surgery, automorphisms and embeddings of manifolds, surgery theoretic methods for the study of group actions and stratified spaces, metrics of positive scalar curvature, and surgery in dimension four. In addition to the editors, the contributors are S. Ferry, M. Weiss, B. Williams, T. Goodwillie, J. Klein, S. Weinberger, B. Hughes, S. Stolz, R. Kirby, L. Taylor, and F. Quinn.
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
|
You may like...
|