High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!