0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Influence of Temperature on Microelectronics and System Reliability - A Physics of Failure Approach (Paperback): Pradeep Lall,... Influence of Temperature on Microelectronics and System Reliability - A Physics of Failure Approach (Paperback)
Pradeep Lall, Michael G. Pecht, Edward B. Hakim
R1,306 Discovery Miles 13 060 Ships in 12 - 17 working days

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The

Influence of Temperature on Microelectronics and System Reliability - A Physics of Failure Approach (Hardcover, New): Pradeep... Influence of Temperature on Microelectronics and System Reliability - A Physics of Failure Approach (Hardcover, New)
Pradeep Lall, Michael G. Pecht, Edward B. Hakim
R4,169 R3,563 Discovery Miles 35 630 Save R606 (15%) Ships in 12 - 17 working days

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs.

The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture.

The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The final chapter overviews existing guidelines for thermal derating of microelectronic devices, which presently involve lowering the junction temperature. The reader then learns how to use physics-of-failure models presented in the previous chapters for various failure processes, to evaluate the sensitivity of device life to variations in manufacturing defects, device architecture, temperature, and non-temperature stresses.

Microelectronic Reliability, v. 1 - Reliability, Test and Diagnostics (Hardcover): Edward B. Hakim Microelectronic Reliability, v. 1 - Reliability, Test and Diagnostics (Hardcover)
Edward B. Hakim
R3,947 Discovery Miles 39 470 Ships in 10 - 15 working days

Text/reference spaning the theoretical concepts of reliability models and failure distributions, to GaAs microcircuit processing and test. Provides background on the development of quality assurance and verification procedures. Some of the new changes under development to cope with pressures brought

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Rotatrim A4 Paper Ream (80gsm)(500…
R97 Discovery Miles 970
Burberry London Eau De Parfum Spray…
R2,516 R1,514 Discovery Miles 15 140
Bostik Glu Dots - Extra Strength (64…
R55 Discovery Miles 550
ZA Cute Puppy Love Paw Set (Necklace…
R712 R499 Discovery Miles 4 990
Efekto Karbadust Insecticide Dusting…
R54 Discovery Miles 540
Dromex 3-Ply Medical Mask (Box of 50)
 (17)
R1,099 R399 Discovery Miles 3 990
Spider-Man: 5-Movie Collection…
Tobey Maguire, Kirsten Dunst, … Blu-ray disc  (1)
R466 Discovery Miles 4 660
Kenwood Steam Iron (2200W)
R519 R437 Discovery Miles 4 370
Pure Pleasure Fullfit Extra Length…
R999 R899 Discovery Miles 8 990
Hot Wheels Aluminium Bottle…
R129 R79 Discovery Miles 790

 

Partners