![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
Force and Position Control of Mechatronic Systems provides an overview of the general concepts and technologies in the area of force and position control. Novel ideas and innovations related to this area are presented and reported in detail, and examples of applications in medical technology are given. The book begins by introducing force sensing, and modelling of contacting objects. In then moves steadily through a variety of topics, including: * disturbance observer-based force estimation; * force-based supervisory control; * stabilization systems; * controller design; and * control of tube insertion procedures. This book will be of interest to researchers, engineers and students interested in force control, particularly those with a focus on medical applications of these ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Drives and Control for Industrial Automation presents the material necessary for an understanding of servo control in automation. Beginning with a macroscopic view of its subject, treating drives and control as parts of a single system, the book then pursues a detailed discussion of the major components of servo control: sensors, controllers and actuators. Throughout, the mechatronic approach a synergistic integration of the components is maintained, in keeping with contemporary practice. The authors holistic approach does not preclude the reader from learning in a step-by-step fashion each chapter contains material that can be studied separately without compromising understanding. Drives are described in several chapters organized according to the way they are usually classified in industry, each comprised of its actuators and sensors. The controller is discussed alongside. Topics of recent and current interest piezoelectricity, digital communications and future trends are detailed in their own dedicated chapters. Drives and Control for Industrial Automation is primarily written for engineers and researchers interested in the applications of sensors, actuators and control systems in the automated environment. The discussion is thorough with the basics laid out succinctly but in sufficient detail to be useful to non-expert readers so students will also find this monograph a profitable source of information."
This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: * piezoelectric actuators * fine movement control * gantry-stage control * interpolation of quadrature encoder signals * geometrical error modeling for single-, dual- and general-XY-axis stages.
Force and Position Control of Mechatronic Systems provides an overview of the general concepts and technologies in the area of force and position control. Novel ideas and innovations related to this area are presented and reported in detail, and examples of applications in medical technology are given. The book begins by introducing force sensing, and modelling of contacting objects. In then moves steadily through a variety of topics, including: * disturbance observer-based force estimation; * force-based supervisory control; * stabilization systems; * controller design; and * control of tube insertion procedures. This book will be of interest to researchers, engineers and students interested in force control, particularly those with a focus on medical applications of these ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text. Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining position and force control of precision systems with piezoelectric actuation.
Drives and Control for Industrial Automation presents the material necessary for an understanding of servo control in automation. Beginning with a macroscopic view of its subject, treating drives and control as parts of a single system, the book then pursues a detailed discussion of the major components of servo control: sensors, controllers and actuators. Throughout, the mechatronic approach - a synergistic integration of the components - is maintained, in keeping with current practice. The authors' holistic approach does not preclude the reader from learning in a step-by-step fashion - each chapter contains material that can be studied separately without compromising understanding. Drives are described in several chapters according to the way they are usually classified in industry, each comprised of its actuators and sensors. The controller is discussed alongside. Topics of recent and current interest - piezoelectricity, digital communications and future trends - are detailed in their own chapters.
This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: piezoelectric actuators fine movement control gantry-stage control interpolation of quadrature encoder signals geometrical error modeling for single-, dual- and general-XY-axis stages."
Control systems include many components, such as transducers, sensors, actuators and mechanical parts. These components are required to be operated under some specific conditions. However, due to prolonged operations or harsh operating environment, the properties of these devices may degrade to an unacceptable level, causing more regular fault occurrences. It is therefore necessary to diagnose faults and provide the fault-accommodation control which compensates for the fault of the component by substituting a configuration of redundant elements so that the system continues to operate satisfactorily. In this book, we present a result of several years of work in the area of fault diagnosis and fault-accommodation control. It aims at information estimate methods when faults occur. The book uses the model built from the plant or process, to detect and isolate failures, in contrast to traditional hardware or statistical technologies dealing with failures. It presents model-based learning and design technologies for fault detection, isolation and identification as well as fault-tolerant control. These models are also used to analyse the fault detectability and isolability conditions and discuss the stability of the closed-loop system. It is intended to report new technologies in the area of fault diagnosis, covering fault analysis and control strategies of design for various applications. The book addresses four main schemes: modelling of actuator or sensor faults; fault detection and isolation; fault identification, and fault reconfiguration (accommodation) control. It also covers application issues in the monitoring control of actuators, providing several interesting case studies for more application-oriented readers.
Precision motion control is strongly required in many fields, such as precision engineering, micromanufacturing, biotechnology, and nanotechnology. Although great achievements have been made in control engineering, it is still challenging to fulfill the desired performance for precision motion control systems. Substantial works have been presented to reveal an increasing trend to apply optimization approaches in precision engineering to obtain the control system parameters. In this book, we present a result of several years of work in the area of advanced optimization for motion control systems. The book is organized into two parts: Part I focuses on the model-based approaches, and Part II presents the data-based approaches. To illustrate the practical appeal of the proposed optimization techniques, theoretical results are verified with practical examples in each chapter. Industrial problems explored in the book are formulated systematically with necessary analysis of the control system synthesis. By virtue of the design and implementation nature, this book can be used as a reference for engineers, researchers, and students who want to utilize control theories to solve the practical control problems. As the methodologies have extensive applicability in many control engineering problems, the research results in the field of optimization can be applied to full-fledged industrial processes, filling in the gap between research and application to achieve a technology frontier increment.
|
![]() ![]() You may like...
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
|