Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.
Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level. In two previous editions, "Electron Energy-Loss Spectroscopy in the Electron Microscope" has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.
Scanning and stationary-beam electron microscopes have become an indispensable tool for both research and routine evaluation in materials science, the semi- conductor industry, nanotechnology and the biological, forensic, and medical sciences. This book provides an introduction to the theory and current practice of electron microscopy, aimed primarily at undergraduates who need to learn how the basic principles of physics are applied in an important area of science and technology that has contributed greatly to our knowledge of life processes and inner space. However, it will be equally valuable for technologists who make use of electron microscopes and for graduate students, university teachers and researchers who need a concise text that deals with the basic principles of microscopy. Less technical but broader in scope than other microscopy textbooks, Physical Principles of Electron Microscopy is appropriate for undergraduates and technologists with limited math...
Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.
Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level. In two previous editions, Electron Energy-Loss Spectroscopy in the Electron Microscope has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.
Energy-Filtering Transmission Electron Microscopy (EFTEM) presents a summary of the electron optics, the electron-specimen interactions, and the operation and contrast modes of this new field of analytical electron microscopy. The electron optics of filter lenses and the progress in the correction of aberrations are discussed in detail. An evaluation of our present knowledge of plasmon losses and inner-shell ionisations is of increasing interest for a quantitative application of EFTEM in materials and life sciences. This can be realized not only by filtering the elastically scattered electrons but mainly by imgaging and analyzing with inelastically scattered electrons at different energy losses up to 2000 eV. The strength of EFTEM is the combination of the modes EELS, ESI, ESD and REM.
|
You may like...
|