Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > Analytic topology
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
The remarkable developments in differential topology and how these
recent advances have been applied as a primary research tool in
quantum field theory are presented here in a style reflecting the
genuinely two-sided interaction between mathematical physics and
applied mathematics. The author, following his previous work
(Nash/Sen: Differential Topology for Physicists, Academic Press,
1983), covers elliptic differential and pseudo-differential
operators, Atiyah-Singer index theory, topological quantum field
theory, string theory, and knot theory. The explanatory approach
serves to illuminate and clarify these theories for graduate
students and research workers entering the field for the first
time.
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
This book presents a link between modern analysis and topology. Based upon classical Morse theory it develops the finite dimensional analogue of Floer homology which, in the recent years, has come to play a significant role in geometry. Morse homology naturally arises from the gradient dynamical system associated with a Morse function. The underlying chain complex, already considered by Thom, Smale, Milnor and Witten, analogously forms the basic ingredient of Floer's homology theory. This concept of relative Morse theory in combination with Conley's continuation principle lends itself to an axiomatic homology functor. The present approach consistenly employs analytic methods in strict analogy with the construction of Floers homology groups. That is a calculus for certain nonlinear Fredholm operators on Banach manifolds which here are curve spaces and within which the solution sets form the focal moduli spaces. The book offers a systematic and comprehensive presentation of the analysis of these moduli spaces. All theorems within this analytic schedule comprising Fredholm theory, regularity and compactness results, gluing and orientation analysis, together with their proofs and pre-requisite material, are examined here in detail. This exposition thus brings a methodological insight into present-day analysis.
Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors, both of whom have contributed significantly to the field, develop the classification theory for integrable systems with two degrees of freedom. This theory allows one to distinguish such systems up to two natural equivalence relations: the equivalence of the associated foliation into Liouville tori and the usual orbital equaivalence. The authors show that in both cases, one can find complete sets of invariants that give the solution of the classification problem. The first part of the book systematically presents the general construction of these invariants, including many examples and applications. In the second part, the authors apply the general methods of the classification theory to the classical integrable problems in rigid body dynamics and describe their topological portraits, bifurcations of Liouville tori, and local and global topological invariants. They show how the classification theory helps find hidden isomorphisms between integrable systems and present as an example their proof that two famous systems--the Euler case in rigid body dynamics and the Jacobi problem of geodesics on the ellipsoid--are orbitally equivalent. Integrable Hamiltonian Systems: Geometry, Topology, Classification offers a unique opportunity to explore important, previously unpublished results and acquire generally applicable techniques and tools that enable you to work with a broad class of integrable systems.
There are many proposed aims for scientific inquiry - to explain or predict events, to confirm or falsify hypotheses, or to find hypotheses that cohere with our other beliefs in some logical or probabilistic sense. This book is devoted to a different proposal - that the logical structure of the scientist's method should guarantee eventual arrival at the truth, given the scientist's background assumptions. Interest in this methodological property, called "logical reliability", stems from formal learning theory, which draws its insights not from the theory of probability, but from the theory of computability. Kelly first offers an accessible explanation of formal learning theory, then goes on to develop and explore a systematic framework in which various standard learning-theoretic results can be seen as special cases of simpler and more general considerations. Finally, Kelly clarifies the relationship between the resulting framework and other standard issues in the philosophy of science, such as probability, causation, and relativism. Extensively illustrated with figures by the author, The Logic of Reliable Inquiry assumes only introductory knowledge of basic logic and computability theory. It is a major contribution to the literature and will be essential reading for scientists, statiticians, psychologists, linguists, logicians, and philosophers.
Banach spaces and algebras are a key topic of pure mathematics.
Graham Allan's careful and detailed introductory account will prove
essential reading for anyone wishing to specialise in functional
analysis and is aimed at final year undergraduates or masters level
students. Based on the author's lectures to fourth year students at
Cambridge University, the book assumes knowledge typical of first
degrees in mathematics, including metric spaces, analytic topology,
and complex analysis. However, readers are not expected to be
familiar with the Lebesgue theory of measure and integration.
Mathematical models have long been used by geographers and regional scientists to explore the working of urban and regional systems, via a system where the equilibrium point changes slowly and smoothly as the parameters change slowly and smoothly. However, this all changed with the advent of catastrophe theory and bifurcation, which enabled the development of models where a quite sudden change in the position of the equilibrium point results from a slow, small, smooth change in one or more parameters. First published in 1981, this reissue of Professor Wilson's classic study outlines the implications of these mathematical models for geography and regional science, by way of a survey of contemporary applications.
Mathematical models have long been used by geographers and regional scientists to explore the working of urban and regional systems, via a system where the equilibrium point changes slowly and smoothly as the parameters change slowly and smoothly. However, this all changed with the advent of catastrophe theory and bifurcation, which enabled the development of models where a quite sudden change in the position of the equilibrium point results from a slow, small, smooth change in one or more parameters. First published in 1981, this reissue of Professor Wilson 's classic study outlines the implications of these mathematical models for geography and regional science, by way of a survey of contemporary applications.
This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the "folklore". In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.
This book is based on the proceedings of the Fifth Northeast Conference on General Topology and Applications, held at The College of Staten Island - The City University of New York. It provides insight into the relationship between general topology and other areas of mathematics.
This book discusses topics ranging from traditional areas of topology, such as knot theory and the topology of manifolds, to areas such as differential and algebraic geometry. It also discusses other topics such as three-manifolds, group actions, and algebraic varieties.
This book contains an in-depth overview of the current state of the recently emerged and rapidly growing theory of Gnk groups, picture-valued invariants, and braids for arbitrary manifolds. Equivalence relations arising in low-dimensional topology and combinatorial group theory inevitably lead to the study of invariants, and good invariants should be strong and apparent. An interesting case of such invariants is picture-valued invariants, whose values are not algebraic objects, but geometrical constructions, like graphs or polyhedra.In 2015, V O Manturov defined a two-parametric family of groups Gnk and formulated the following principle: if dynamical systems describing a motion of n particles possess a nice codimension 1 property governed by exactly k particles then these dynamical systems possess topological invariants valued in Gnk.The book is devoted to various realisations and generalisations of this principle in the broad sense. The groups Gnk have many epimorphisms onto free products of cyclic groups; hence, invariants constructed from them are powerful enough and easy to compare. However, this construction does not work when we try to deal with points on a 2-surface, since there may be infinitely many geodesics passing through two points. That leads to the notion of another family of groups - nk, which give rise to braids on arbitrary manifolds yielding invariants of arbitrary manifolds.
Most books on fractals focus on deterministic fractals as the impact of incorporating randomness and time is almost absent. Further, most review fractals without explaining what scaling and self-similarity means. This book introduces the idea of scaling, self-similarity, scale-invariance and their role in the dimensional analysis. For the first time, fractals emphasizing mostly on stochastic fractal, and multifractals which evolves with time instead of scale-free self-similarity, are discussed. Moreover, it looks at power laws and dynamic scaling laws in some detail and provides an overview of modern statistical tools for calculating fractal dimension and multifractal spectrum.
Exploring the full scope of differential topology, this comprehensive account of geometric techniques for studying the topology of smooth manifolds offers a wide perspective on the field. Building up from first principles, concepts of manifolds are introduced, supplemented by thorough appendices giving background on topology and homotopy theory. Deep results are then developed from these foundations through in-depth treatments of the notions of general position and transversality, proper actions of Lie groups, handles (up to the h-cobordism theorem), immersions and embeddings, concluding with the surgery procedure and cobordism theory. Fully illustrated and rigorous in its approach, little prior knowledge is assumed, and yet growing complexity is instilled throughout. This structure gives advanced students and researchers an accessible route into the wide-ranging field of differential topology.
This book introduces the reader to powerful methods of critical point theory and details successful contemporary approaches to many problems, some of which had proved resistant to attack by older methods. Topics covered include Morse theory, critical groups, the minimax principle, various notions of linking, jumping nonlinearities and the Fucik spectrum in an abstract setting, sandwich pairs and the cohomological index. Applications to semilinear elliptic boundary value problems, p-Laplacian problems and anisotropic systems are given. Written for graduate students and research scientists, the book includes numerous examples and presents more recent developments in the subject to bring the reader up to date with the latest research.
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems."
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m, q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background
Complex Analysis is the powerful fusion of the complex numbers (involving the 'imaginary' square root of -1) with ordinary calculus, resulting in a tool that has been of central importance to science for more than 200 years. This book brings this majestic and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. The 501 diagrams of the original edition embodied geometrical arguments that (for the first time) replaced the long and often opaque computations of the standard approach, in force for the previous 200 years, providing direct, intuitive, visual access to the underlying mathematical reality. This new 25th Anniversary Edition introduces brand-new captions that fully explain the geometrical reasoning, making it possible to read the work in an entirely new way-as a highbrow comic book!
A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract an uncountable subfamily with the finite intersection property. This monograph, which is partly fresh research and partly expository (in the sense that the authors co-ordinate and unify disparate results obtained in several different countries over a period of several decades) is devoted to the systematic use of infinitary combinatorial methods in topology to obtain results concerning chain conditions. The combinatorial tools developed by P. Erdos and the Hungarian school, by Erdos and Rado in the 1960s and by the Soviet mathematician Shanin in the 1940s, are adequate to handle many natural questions concerning chain conditions in product spaces.
The purpose of this book is to study the relation between the representation ring of a finite group and its integral cohomology by means of characteristic classes. In this way it is possible to extend the known calculations and prove some general results for the integral cohomology ring of a group G of prime power order. Among the groups considered are those of p-rank less than 3, extra-special p-groups, symmetric groups and linear groups over finite fields. An important tool is the Riemann - Roch formula which provides a relation between the characteristic classes of an induced representation, the classes of the underlying representation and those of the permutation representation of the infinite symmetric group. Dr Thomas also discusses the implications of his work for some arithmetic groups which will interest algebraic number theorists. Dr Thomas assumes the reader has taken basic courses in algebraic topology, group theory and homological algebra, but has included an appendix in which he gives a purely topological proof of the Riemann - Roch formula.
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.
The calculus of variations has been an active area of mathematics for over 300 years. Its main use is to find stable critical points of functions for the solution of problems. To find unstable values, new approaches (Morse theory and min-max methods) were developed, and these are still being refined to overcome difficulties when applied to the theory of partial differential equations. Here, Professor Ghoussoub describes a point of view that may help when dealing with such problems. Building upon min-max methods, he systematically develops a general theory that can be applied in a variety of situations. In so doing he also presents a whole array of duality and perturbation methods. The prerequisites for following this book are relatively few; an appendix sketching certain methods in analysis makes the book reasonably self-contained. Consequently, it should be accessible to all mathematicians, pure or applied, economists and engineers working in nonlinear analysis or optimization. |
You may like...
Singularities and Foliations. Geometry…
Raimundo Nonato Araujo dos Santos, Aurelio Menegon Neto, …
Hardcover
R4,960
Discovery Miles 49 600
Probability in Banach Spaces at…
A. Badrikian, Jorgen Hoffmann-Jorgensen, …
Paperback
R1,924
Discovery Miles 19 240
Hamiltonian Field Theory in the…
Piotr T Chru sciel, Jacek Jezierski, …
Hardcover
R2,890
Discovery Miles 28 900
Advances in Dynamic Equations on Time…
Martin Bohner, Allan C. Peterson
Hardcover
Singularities in Geometry, Topology…
Jose Luis Cisneros-Molina, Dung Trang Le, …
Hardcover
R5,245
Discovery Miles 52 450
Fourier Analysis on Number Fields
Dinakar Ramakrishnan, Robert J. Valenza
Hardcover
R2,844
Discovery Miles 28 440
|