Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > Analytic topology
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. * Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals * Carefully explains each topic using illustrative examples and diagrams * Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics * Features a wide range of exercises, enabling readers to consolidate their understanding * Supported by a website with solutions to exercises and additional material http://www.wileyeurope.com/fractal Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)
This book contains all research papers published by the distinguished Brazilian mathematician Elon Lima. It includes the papers from his PhD thesis on homotopy theory, which are hard to find elsewhere. Elon Lima wrote more than 40 books in the field of topology and dynamical systems. He was a profound mathematician with a genuine vocation to teach and write mathematics.
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
Banach spaces and algebras are a key topic of pure mathematics.
Graham Allan's careful and detailed introductory account will prove
essential reading for anyone wishing to specialise in functional
analysis and is aimed at final year undergraduates or masters level
students. Based on the author's lectures to fourth year students at
Cambridge University, the book assumes knowledge typical of first
degrees in mathematics, including metric spaces, analytic topology,
and complex analysis. However, readers are not expected to be
familiar with the Lebesgue theory of measure and integration.
International authorities from Canada, Denmark, England, Germany,
Russia and South Africa focus on research on fractal geometry and
the best practices in software, theoretical mathematical
algorithms, and analysis. They address the rich panoply of manifold
applications of fractal geometry available for study and research
in science and industry: i.e., remote sensing, mapping, texture
creations, pattern recognition, image compression, aeromechanical
systems, cryptography and financial analysis. Economically priced,
this important and authoritative reference source for research and
study cites over 230 references to the literature, copiously
illustrated with over 320 diagrams and photographs. The book is
published for The Institute of Mathematics and its Applications,
co-sponsored with The Institute of Physics and The Institution of
Electrical Engineers.
In the mid-1980's, Abhay Ashtekar discovered a reformulation of general relativity in terms of what are now called the "new variables". This led to a rapid series of developments, and in 1990 Carlo Rovelli and Lee Smolin published a paper entitled "Loop representation of quantum general relativity", in which, among other things, it was shown that there is a space of solutions to the constraint equations of quantum gravity consisting of link invariants. The discovery of relations between quantum gravity and the theory of knots and links came as quite a surprise, since the topics had been regarded as quite remote from each other. This volume is the proceedings of a workshop held in 1993 at the University of California at Riverside. The purpose of the workshop was to bring together researchers in knot theory and quantum gravity and form more bridges between the two subjects. Most of the talks were given by researchers whose work has significance for both subjects. This volume contains expository papers as well as new results, and should serve as a guide for mathematicians and physicists seeking to understand this rapidly developing area of research.
People have been interested in knots at least since the time of Alexander the Great and his encounter with the Gordian knot. There are famous knot illustrations in the Book of Kells and throughout traditional Islamic art. Lord Kelvin believed that atoms were knots in the ether and he encouraged Tait to compile a talbe of knots about 100 years ago. In recent years, the Jones polynomial has stimulated much interest in possible relationships between knot theory and physics. The book is concerned with the fundamental question of the classification of knots, and more generally the classification of arbitrary (compact) topological objects which can occur in our normal space of physical reality. Professor Hemion explains his classification algorithm - using the method of normal surfaces - in a simple and concise way. The reader is thus shown the relevance of such traditional mathematical objects as the Klein bottle or the hyperbolic plane to this basic classification theory. The Classification of Knots and 3-dimensional Spaces will be of interest to mathematicians, physicists, and other scientists who want to apply this basic classification algorithm to their research in knot theory.
This book is an introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. The authors provide a number of applications, principally to number theory and arithmetic progressions (through Van der Waerden's theorem and Szemerdi's theorem). This text is suitable for advanced undergraduate and beginning graduate students.
In this brief treatise, Ekelund explains some philosophical implications of recent mathematics. He examines randomness, the geometry involved in making predictions, and why general trends are easy to project, but particulars are practically impossible.
This book provides a detailed introduction to the coarse quasi-isometry of leaves of a foliated space and describes the cases where the generic leaves have the same quasi-isometric invariants. Every leaf of a compact foliated space has an induced coarse quasi-isometry type, represented by the coarse metric defined by the length of plaque chains given by any finite foliated atlas. When there are dense leaves either all dense leaves without holonomy are uniformly coarsely quasi-isometric to each other, or else every leaf is coarsely quasi-isometric to just meagerly many other leaves. Moreover, if all leaves are dense, the first alternative is characterized by a condition on the leaves called coarse quasi-symmetry. Similar results are proved for more specific coarse invariants, like growth type, asymptotic dimension, and amenability. The Higson corona of the leaves is also studied. All the results are richly illustrated with examples. The book is primarily aimed at researchers on foliated spaces. More generally, specialists in geometric analysis, topological dynamics, or metric geometry may also benefit from it.
In the spring of 1985, A. Casson announced an interesting invariant of homology 3-spheres via constructions on representation spaces. This invariant generalizes the Rohlin invariant and gives surprising corollaries in low-dimensional topology. In the fall of that same year, Selman Akbulut and John McCarthy held a seminar on this invariant. These notes grew out of that seminar. The authors have tried to remain close to Casson's original outline and proceed by giving needed details, including an exposition of Newstead's results. They have often chosen classical concrete approaches over general methods. For example, they did not attempt to give gauge theory explanations for the results of Newstead; instead they followed his original techniques. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Complex Analysis is the powerful fusion of the complex numbers (involving the 'imaginary' square root of -1) with ordinary calculus, resulting in a tool that has been of central importance to science for more than 200 years. This book brings this majestic and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. The 501 diagrams of the original edition embodied geometrical arguments that (for the first time) replaced the long and often opaque computations of the standard approach, in force for the previous 200 years, providing direct, intuitive, visual access to the underlying mathematical reality. This new 25th Anniversary Edition introduces brand-new captions that fully explain the geometrical reasoning, making it possible to read the work in an entirely new way—as a highbrow comic book!
How is a subway map different from other maps? What makes a knot knotted? What makes the Moebius strip one-sided? These are questions of topology, the mathematical study of properties preserved by twisting or stretching objects. In the 20th century topology became as broad and fundamental as algebra and geometry, with important implications for science, especially physics. In this Very Short Introduction Richard Earl gives a sense of the more visual elements of topology (looking at surfaces) as well as covering the formal definition of continuity. Considering some of the eye-opening examples that led mathematicians to recognize a need for studying topology, he pays homage to the historical people, problems, and surprises that have propelled the growth of this field. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Topological analysis consists of those basic theorems of analysis which are essentially topological in character, developed and proved entirely by topological and pseudotopological methods. The objective of this volume is the promotion, encouragement, and stimulation of the interaction between topology and analysis-to the benefit of both. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book provides a comprehensive and up-to-date introduction to Hodge theory--one of the central and most vibrant areas of contemporary mathematics--from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kahler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck's algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne's theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, Francois Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Le D?ng Trang, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu."
Topological analysis consists of those basic theorems of analysis which are essentially topological in character, developed and proved entirely by topological and pseudotopological methods. The objective of this volume is the promotion, encouragement, and stimulation of the interaction between topology and analysis-to the benefit of both. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
One of the great achievements of contemporary mathematics is the new understanding of four dimensions. Michael Freedman and Frank Quinn have been the principals in the geometric and topological development of this subject, proving the Poincar and Annulus conjectures respectively. Recognition for this work includes the award of the Fields Medal of the International Congress of Mathematicians to Freedman in 1986. In Topology of 4-Manifolds these authors have collaborated to give a complete and accessible account of the current state of knowledge in this field. The basic material has been considerably simplified from the original publications, and should be accessible to most graduate students. The advanced material goes well beyond the literature; nearly one-third of the book is new. This work is indispensable for any topologist whose work includes four dimensions. It is a valuable reference for geometers and physicists who need an awareness of the topological side of the field. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
One of the great achievements of contemporary mathematics is the new understanding of four dimensions. Michael Freedman and Frank Quinn have been the principals in the geometric and topological development of this subject, proving the Poincar and Annulus conjectures respectively. Recognition for this work includes the award of the Fields Medal of the International Congress of Mathematicians to Freedman in 1986. In Topology of 4-Manifolds these authors have collaborated to give a complete and accessible account of the current state of knowledge in this field. The basic material has been considerably simplified from the original publications, and should be accessible to most graduate students. The advanced material goes well beyond the literature; nearly one-third of the book is new. This work is indispensable for any topologist whose work includes four dimensions. It is a valuable reference for geometers and physicists who need an awareness of the topological side of the field. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
In the words of B. B. Mandelbrot's contribution to this important collection of original papers, fractal geometry is a "new geometric language, which is geared towards the study of diverse aspects of diverse objects, either mathematical or natural, that are not smooth, but rough and fragmented to the same degree at all scales." This book will be of interest to all physical and biological scientists studying these phenomena. It is based on a Royal Society discussion meeting held in 1988. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
In the spring of 1985, A. Casson announced an interesting invariant of homology 3-spheres via constructions on representation spaces. This invariant generalizes the Rohlin invariant and gives surprising corollaries in low-dimensional topology. In the fall of that same year, Selman Akbulut and John McCarthy held a seminar on this invariant. These notes grew out of that seminar. The authors have tried to remain close to Casson's original outline and proceed by giving needed details, including an exposition of Newstead's results. They have often chosen classical concrete approaches over general methods. For example, they did not attempt to give gauge theory explanations for the results of Newstead; instead they followed his original techniques. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The theory of D-modules deals with the algebraic aspects of differential equations. These are particularly interesting on homogeneous manifolds, since the infinitesimal action of a Lie algebra consists of differential operators. Hence, it is possible to attach geometric invariants, like the support and the characteristic variety, to representations of Lie groups. By considering D-modules on flag varieties, one obtains a simple classification of all irreducible admissible representations of reductive Lie groups. On the other hand, it is natural to study the representations realized by functions on pseudo-Riemannian symmetric spaces, i.e., spherical representations. The problem is then to describe the spherical representations among all irreducible ones, and to compute their multiplicities. This is the goal of this work, achieved fairly completely at least for the discrete series representations of reductive symmetric spaces. The book provides a general introduction to the theory of D-modules on flag varieties, and it describes spherical D-modules in terms of a cohomological formula. Using microlocalization of representations, the author derives a criterion for irreducibility. The relation between multiplicities and singularities is also discussed at length. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, " Analytic Theory of Global Bifurcation" is intended for graduate students and researchers in pure and applied analysis.
The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected. |
You may like...
Singularities and Foliations. Geometry…
Raimundo Nonato Araujo dos Santos, Aurelio Menegon Neto, …
Hardcover
R4,960
Discovery Miles 49 600
Introduction to Large Truncated Toeplitz…
Albrecht Boettcher, Bernd Silbermann
Hardcover
R2,945
Discovery Miles 29 450
Hamiltonian Field Theory in the…
Piotr T Chru sciel, Jacek Jezierski, …
Hardcover
R2,890
Discovery Miles 28 900
Fractal-Based Methods in Analysis
Herb Kunze, Davide La Torre, …
Hardcover
R2,856
Discovery Miles 28 560
Differential Topology and Quantum Field…
Charles Nash
Paperback
Topological Nonlinear Analysis II…
Michele Matzeu, Alfonso Vignoli
Hardcover
R4,397
Discovery Miles 43 970
Advances in Dynamic Equations on Time…
Martin Bohner, Allan C. Peterson
Hardcover
|