![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > Analytic topology
Since Poincare's time, topologists have been most concerned with three species of manifold. The most primitive of these--the TOP manifolds--remained rather mysterious until 1968, when Kirby discovered his now famous torus unfurling device. A period of rapid progress with TOP manifolds ensued, including, in 1969, Siebenmann's refutation of the Hauptvermutung and the Triangulation Conjecture. Here is the first connected account of Kirby's and Siebenmann's basic research in this area. The five sections of this book are introduced by three articles by the authors that initially appeared between 1968 and 1970. Appendices provide a full discussion of the classification of homotopy tori, including Casson's unpublished work and a consideration of periodicity in topological surgery.
This is the second of two volumes on the qualitative theory of foliations. For this volume, the authors have selected three special topics: analysis on foliated spaces, characteristic classes of foliations, and foliated manifolds. Each of these is an example of deep interaction between foliation theory and some other highly-developed area of mathematics. In all cases, the authors present useful, in-depth introductions, which lead to further study using the extensive available literature. This comprehensive volume has something to offer a broad spectrum of readers: from beginners to advanced students to professional researchers. It contains exercises and many illustrations. The book would make an elegant supplementary text for a topics course at the advanced graduate level. ""Foliations I"" is Volume 23 in the AMS series, ""Graduate Studies in Mathematics"".
Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.
First integrated treatment of main ideas behind Rene Thom's theory
of catastrophes stresses detailed applications in the physical
sciences. Mathematics of theory explained with a minimum of
technicalities. Over 200 illustrations clarify text designed for
researchers and postgraduate students in engineering, mathematics,
physics and biology. 1978 edition. Bibliography.
In this brief treatise, Ekelund explains some philosophical implications of recent mathematics. He examines randomness, the geometry involved in making predictions, and why general trends are easy to project, but particulars are practically impossible.
This research-level monograph on harmonic maps between singular spaces sets out much new material on the theory, bringing all the research together for the first time in one place. Riemannian polyhedra are a class of such spaces that are especially suitable to serve as the domain of definition for harmonic maps. Their properties are considered in detail, with many examples being given, and potential theory on Riemmanian polyhedra is also considered. The work will serve as a concise source and reference for all researchers working in this field or a similar one.
This book covers analysis on fractals, a developing area of mathematics that focuses on the dynamical aspects of fractals, such as heat diffusion on fractals and the vibration of a material with fractal structure. The book provides a self-contained introduction to the subject, starting from the basic geometry of self-similar sets and going on to discuss recent results, including the properties of eigenvalues and eigenfunctions of the Laplacians, and the asymptotical behaviors of heat kernels on self-similar sets. Requiring only a basic knowledge of advanced analysis, general topology and measure theory, this book will be of value to graduate students and researchers in analysis and probability theory. It will also be useful as a supplementary text for graduate courses covering fractals.
This book is an introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. The authors provide a number of applications, principally to number theory and arithmetic progressions (through Van der Waerden's theorem and Szemerdi's theorem). This text is suitable for advanced undergraduate and beginning graduate students.
Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists.
There are many proposed aims for scientific inquiry - to explain or predict events, to confirm or falsify hypotheses, or to find hypotheses that cohere with our other beliefs in some logical or probabilistic sense. This book is devoted to a different proposal - that the logical structure of the scientist's method should guarantee eventual arrival at the truth, given the scientist's background assumptions. Interest in this methodological property, called "logical reliability", stems from formal learning theory, which draws its insights not from the theory of probability, but from the theory of computability. Kelly first offers an accessible explanation of formal learning theory, then goes on to develop and explore a systematic framework in which various standard learning-theoretic results can be seen as special cases of simpler and more general considerations. Finally, Kelly clarifies the relationship between the resulting framework and other standard issues in the philosophy of science, such as probability, causation, and relativism. Extensively illustrated with figures by the author, The Logic of Reliable Inquiry assumes only introductory knowledge of basic logic and computability theory. It is a major contribution to the literature and will be essential reading for scientists, statiticians, psychologists, linguists, logicians, and philosophers.
The main theme of this book is the mathematical theory of knots and its interaction with the theory of surfaces. Beginning with a simple diagrammatic approach to the study of knots, reflecting the artistic and geometric appeal of interlaced forms, Knots and Surfaces takes the reader through recent advances in our understanding to areas of current research. Included are straightforward introductions to topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations. These topics combine into a coherent and highly developed theory to explore and explain the accessible and intuitive problems of knots and surfaces. Both as an introduction to several areas of prime importance to the development of pure mathematics today, and as an account of pure mathematics in action in an unusual context, the book presents novel challenges to students and other interested readers.
The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. This branch of science is attractive because it is one of those which revives the interest in the basic principles of mathematics, a beautiful formula. |
![]() ![]() You may like...
Astrophysics for People in a Hurry
Neil De Grasse Tyson
Hardcover
![]()
The Fast 800 - How to Combine Rapid…
Dr Michael Mosley
Paperback
![]()
|