Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > Analytic topology
In the spring of 1985, A. Casson announced an interesting invariant of homology 3-spheres via constructions on representation spaces. This invariant generalizes the Rohlin invariant and gives surprising corollaries in low-dimensional topology. In the fall of that same year, Selman Akbulut and John McCarthy held a seminar on this invariant. These notes grew out of that seminar. The authors have tried to remain close to Casson's original outline and proceed by giving needed details, including an exposition of Newstead's results. They have often chosen classical concrete approaches over general methods. For example, they did not attempt to give gauge theory explanations for the results of Newstead; instead they followed his original techniques. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The theory of D-modules deals with the algebraic aspects of differential equations. These are particularly interesting on homogeneous manifolds, since the infinitesimal action of a Lie algebra consists of differential operators. Hence, it is possible to attach geometric invariants, like the support and the characteristic variety, to representations of Lie groups. By considering D-modules on flag varieties, one obtains a simple classification of all irreducible admissible representations of reductive Lie groups. On the other hand, it is natural to study the representations realized by functions on pseudo-Riemannian symmetric spaces, i.e., spherical representations. The problem is then to describe the spherical representations among all irreducible ones, and to compute their multiplicities. This is the goal of this work, achieved fairly completely at least for the discrete series representations of reductive symmetric spaces. The book provides a general introduction to the theory of D-modules on flag varieties, and it describes spherical D-modules in terms of a cohomological formula. Using microlocalization of representations, the author derives a criterion for irreducibility. The relation between multiplicities and singularities is also discussed at length. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, " Analytic Theory of Global Bifurcation" is intended for graduate students and researchers in pure and applied analysis.
The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors asked a variety of experts to report on the areas of current interest. This is the second of two volumes resulting from that collective effort. It will be useful to topologists, to other interested researchers, and to advanced students. The topics covered include current applications of surgery, Wall's finiteness obstruction, algebraic surgery, automorphisms and embeddings of manifolds, surgery theoretic methods for the study of group actions and stratified spaces, metrics of positive scalar curvature, and surgery in dimension four. In addition to the editors, the contributors are S. Ferry, M. Weiss, B. Williams, T. Goodwillie, J. Klein, S. Weinberger, B. Hughes, S. Stolz, R. Kirby, L. Taylor, and F. Quinn.
The description for this book, Elementary Differential Topology. (AM-54), will be forthcoming.
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
In the words of B. B. Mandelbrot's contribution to this important collection of original papers, fractal geometry is a "new geometric language, which is geared towards the study of diverse aspects of diverse objects, either mathematical or natural, that are not smooth, but rough and fragmented to the same degree at all scales." This book will be of interest to all physical and biological scientists studying these phenomena. It is based on a Royal Society discussion meeting held in 1988. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This is the second of two volumes on the qualitative theory of foliations. For this volume, the authors have selected three special topics: analysis on foliated spaces, characteristic classes of foliations, and foliated manifolds. Each of these is an example of deep interaction between foliation theory and some other highly-developed area of mathematics. In all cases, the authors present useful, in-depth introductions, which lead to further study using the extensive available literature. This comprehensive volume has something to offer a broad spectrum of readers: from beginners to advanced students to professional researchers. It contains exercises and many illustrations. The book would make an elegant supplementary text for a topics course at the advanced graduate level. ""Foliations I"" is Volume 23 in the AMS series, ""Graduate Studies in Mathematics"".
Since Poincare's time, topologists have been most concerned with three species of manifold. The most primitive of these--the TOP manifolds--remained rather mysterious until 1968, when Kirby discovered his now famous torus unfurling device. A period of rapid progress with TOP manifolds ensued, including, in 1969, Siebenmann's refutation of the Hauptvermutung and the Triangulation Conjecture. Here is the first connected account of Kirby's and Siebenmann's basic research in this area. The five sections of this book are introduced by three articles by the authors that initially appeared between 1968 and 1970. Appendices provide a full discussion of the classification of homotopy tori, including Casson's unpublished work and a consideration of periodicity in topological surgery.
This book presents topical research in the study of the classification and application of fractals, including the fractal analysis of oil crude market volatility and supply chain volatility in the telecom industry; a stochastic analysis of fractal properties of clusters composed of stable gas nanobubbles suspended in aqueous electrolyte solutions; the fractal analysis of electromagnetic emissions in earthquake detection; applications of fractal geometries to design Frequency Selective Surfaces (FSS); fractal-based models of cancer in systems biology; soil structure fractal analysis and applications of multifractals in diverse fields like astronomy and the stock market.
In this book the results on set-valued dynamical systems (dynamical systems without uniqueness) and some adjoining problems are studied. A part of the book is dedicated to the study of global attractors of control systems (as application of our general results concerning the compact global attractors of general set-valued dynamical systems). This book is the first to study the global attractors of set-valued dynamical and control systems. The basic results are contained in the courses of lectures which author has given during many years.
The main theme of this book is the mathematical theory of knots and its interaction with the theory of surfaces. Beginning with a simple diagrammatic approach to the study of knots, reflecting the artistic and geometric appeal of interlaced forms, Knots and Surfaces takes the reader through recent advances in our understanding to areas of current research. Included are straightforward introductions to topological spaces, surfaces, the fundamental group, graphs, free groups, and group presentations. These topics combine into a coherent and highly developed theory to explore and explain the accessible and intuitive problems of knots and surfaces. Both as an introduction to several areas of prime importance to the development of pure mathematics today, and as an account of pure mathematics in action in an unusual context, the book presents novel challenges to students and other interested readers.
This is the first authored book to be dedicated to the new field of directed algebraic topology that arose in the 1990s, in homotopy theory and in the theory of concurrent processes. Its general aim can be stated as 'modelling non-reversible phenomena' and its domain should be distinguished from that of classical algebraic topology by the principle that directed spaces have privileged directions and directed paths therein need not be reversible. Its homotopical tools (corresponding in the classical case to ordinary homotopies, fundamental group and fundamental groupoid) should be similarly 'non-reversible': directed homotopies, fundamental monoid and fundamental category. Homotopy constructions occur here in a directed version, which gives rise to new 'shapes', like directed cones and directed spheres. Applications will deal with domains where privileged directions appear, including rewrite systems, traffic networks and biological systems. The most developed examples can be found in the area of concurrency.
The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. This branch of science is attractive because it is one of those which revives the interest in the basic principles of mathematics, a beautiful formula. |
You may like...
Fractal-Based Methods in Analysis
Herb Kunze, Davide La Torre, …
Hardcover
R2,856
Discovery Miles 28 560
Metric Foliations and Curvature
Detlef Gromoll, Gerard Walschap
Hardcover
R3,268
Discovery Miles 32 680
Singularities in Geometry, Topology…
Jose Luis Cisneros-Molina, Dung Trang Le, …
Hardcover
R5,245
Discovery Miles 52 450
Singularities and Foliations. Geometry…
Raimundo Nonato Araujo dos Santos, Aurelio Menegon Neto, …
Hardcover
R4,960
Discovery Miles 49 600
Topological Nonlinear Analysis II…
Michele Matzeu, Alfonso Vignoli
Hardcover
R4,397
Discovery Miles 43 970
Introduction to Large Truncated Toeplitz…
Albrecht Boettcher, Bernd Silbermann
Hardcover
R2,945
Discovery Miles 29 450
|