![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
This book explores recent perspectives on type-2 fuzzy sets. Written as a tribute to Professor Jerry Mendel for his pioneering works on type-2 fuzzy sets and systems, it covers a wide range of topics, including applications to the Go game, machine learning and pattern recognition, as well as type-2 fuzzy control and intelligent systems. The book is intended as a reference guide for the type-2 fuzzy logic community, yet it aims also at other communities dealing with similar methods and applications.
Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.
The research book is a continuation of the authors' previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing a number of real-life applications including the identification of handwritten texts, watermarking techniques, simultaneous localization and mapping for mobile robots, motion control systems for mobile robots, analysis of indoor human activity, facial image quality assessment, android device controlling, processing medical images, clinical decision-making and foot progression angle detection. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, the book offers a timely guide for all PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
The book offers an integrated vision on Cloud and HPC, Big Data, Analytics and virtualization in computing-oriented manufacturing, combining information and communication technologies, service-oriented control of holonic architectures as well as enterprise integration solutions based on SOA principles. It is structured in eight parts, each one grouping research and trends in digital manufacturing and service oriented manufacturing control: Cloud and Cyber-Physical Systems for Smart Manufacturing, Reconfigurable and Self-organized Multi-Agent Systems for Industry and Service, Sustainability Issues in Intelligent Manufacturing Systems, Holonic and Multi-agent System Design for Industry and Service, Should Intelligent Manufacturing Systems be Dependable and Safe?, Service-oriented Management and Control of Manufacturing Systems, Engineering and Human Integration in Flexible and Reconfigurable Industrial Systems,Virtualization and Simulation in Computing-oriented Industry and Service.p>
This book explains how to teach better and presents the latest research on processing educational data and presents traditional statistical techniques as well as probabilistic, interval, and fuzzy approaches. Teaching is a very rewarding activity; it is also a very difficult one - because it is largely an art. There is a lot of advice on teaching available, but it is usually informal and is not easy to follow. To remedy this situation, it is reasonable to use techniques specifically designed to handle such imprecise knowledge: the fuzzy logic techniques. Since there are a large number of statistical studies of different teaching techniques, the authors combined statistical and fuzzy approaches to process the educational data in order to provide insights into improving all the stages of the education process: from forming a curriculum to deciding in which order to present the material to grading the assignments and exams. The authors do not claim to have solved all the problems of education. Instead they show, using numerous examples, that an innovative combination of different uncertainty techniques can improve teaching. The book offers teachers and instructors valuable advice and provides researchers in pedagogical and fuzzy areas with techniques to further advance teaching.
This book presents cutting-edge research on various ways to bridge the semantic gap in image and video analysis. The respective chapters address different stages of image processing, revealing that the first step is a future extraction, the second is a segmentation process, the third is object recognition, and the fourth and last involve the semantic interpretation of the image. The semantic gap is a challenging area of research, and describes the difference between low-level features extracted from the image and the high-level semantic meanings that people can derive from the image. The result greatly depends on lower level vision techniques, such as feature selection, segmentation, object recognition, and so on. The use of deep models has freed humans from manually selecting and extracting the set of features. Deep learning does this automatically, developing more abstract features at the successive levels. The book offers a valuable resource for researchers, practitioners, students and professors in Computer Engineering, Computer Science and related fields whose work involves images, video analysis, image interpretation and so on.
This volume consists of 52 peer-reviewed papers, presented at the International Conference on Sustainable Design and Manufacturing (SDM-19) held in Budapest, Hungary in July 2019. Leading-edge research into sustainable design and manufacturing aims to enable the manufacturing industry to grow by adopting more advanced technologies, and at the same time improve its sustainability by reducing its environmental impact. The topic includes the sustainable design of products and services; the sustainable manufacturing of all products; energy efficiency in manufacturing; innovation for eco-design; circular economy; industry 4.0; industrial metabolism; automotive and transportation systems. Application areas are wide and varied. The book will provide an excellent overview of the latest developments in the Sustainable Design and Manufacturing Area.
This book presents recent research on the hybridization of intelligent methods, which refers to combining methods to solve complex problems. It discusses hybrid approaches covering different areas of intelligent methods and technologies, such as neural networks, swarm intelligence, machine learning, reinforcement learning, deep learning, agent-based approaches, knowledge-based system and image processing. The book includes extended and revised versions of invited papers presented at the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2016), held in The Hague, Holland, in August 2016. The book is intended for researchers and practitioners from academia and industry interested in using hybrid methods for solving complex problems.
This is a handbook of Gamma-convergence, which is a theoretical tool used to study problems in Applied Mathematics where varying parameters are present, with many applications that range from Mechanics to Computer Vision. The book is directed to Applied Mathematicians in all fields and to Engineers with a theoretical background.
There are many different approaches to understanding human consciousness. By conducting research to better understand various biological mechanisms, these can be redefined and utilized for technological purposes. Advanced Research on Biologically Inspired Cognitive Architectures is an essential reference source for the latest scholarly research on the biological elements of human cognition and examines the applications of consciousness within computing environments. Featuring exhaustive coverage on a broad range of innovative topics and perspectives, such as artificial intelligence, bio-robotics, and human-computer interaction, this publication is ideally designed for academics, researchers, professionals, graduate students, and practitioners seeking current research on the exploration of the intricacies of consciousness and different approaches of perception.
This book discusses the principle of automotive intelligent technology from the point of view of modern sensing and intelligent control. Based on the latest research in the field, it explores safe driving with intelligent vision; intelligent monitoring of dangerous driving; intelligent detection of automobile power and transmission systems; intelligent vehicle navigation and transportation systems; and vehicle-assisted intelligent technology. It draws on the author's research in the field of automotive intelligent technology to explain the fundamentals of vehicle intelligent technology, from the information sensing principle to mathematical models and the algorithm basis, enabling readers to grasp the concepts of automotive intelligent technology. Opening up new scientific horizons and fostering innovative thinking, the book is a valuable resource for researchers as well as undergraduate and graduate students.
Complex problems usually cannot be solved by individual methods or techniques and require the synergism of more than one of them to be solved. This book presents a number of current efforts that use combinations of methods or techniques to solve complex problems in the areas of sentiment analysis, search in GIS, graph-based social networking, intelligent e-learning systems, data mining and recommendation systems. Most of them are connected with specific applications, whereas the rest are combinations based on principles. Most of the chapters are extended versions of the corresponding papers presented in CIMA-15 Workshop, which took place in conjunction with IEEE ICTAI-15, in November 2015. The rest are invited papers that responded to special call for papers for the book. The book is addressed to researchers and practitioners from academia or industry, who are interested in using combined methods in solving complex problems in the above areas.
This book is about computational models of reading, or models that explain (and often simulate) the mental processes that allow us to convert the marks on a printed page into the representations that allow us to understand the contents of what we are reading. Computational Models of Reading assumes no prior knowledge of the topic and is intended for psychologists, linguists, and educators who are interested in gaining a better understanding of what happens in the mind during reading. Erik D. Reichle includes introductory chapters on reading research and computational modelling, and the "core" chapters of the book review both important empirical findings and the models designed to explain those findings within four domains of reading research: word identification, sentence processing, discourse representation, and eye-movement control (which involves coordinating word, sentence, and discourse processing with the perceptual, cognitive, and motoric systems responsible for vision, attention, and eye movements). The final chapter of the book describes a new integrative model of reading, UEber-Reader, and several simulations using the models that demonstrate how it explains several key reading phenomena.
Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often "messy" and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in space and time, and (3) pattern recognition for ecological sampling. Machine learning can be used to make predictive assessments even when relationships between variables are poorly understood. When traditional techniques fail to capture the relationship between variables, effective use of machine learning can unearth and capture previously unattainable insights into an ecosystem's complexity. Currently, many ecologists do not utilize machine learning as a part of the scientific process. This volume highlights how machine learning techniques can complement the traditional methodologies currently applied in this field.
Biomedical Texture Analysis: Fundamentals, Applications, Tools and Challenges describes the fundamentals and applications of biomedical texture analysis (BTA) for precision medicine. It defines what biomedical textures (BTs) are and why they require specific image analysis design approaches when compared to more classical computer vision applications. The fundamental properties of BTs are given to highlight key aspects of texture operator design, providing a foundation for biomedical engineers to build the next generation of biomedical texture operators. Examples of novel texture operators are described and their ability to characterize BTs are demonstrated in a variety of applications in radiology and digital histopathology. Recent open-source software frameworks which enable the extraction, exploration and analysis of 2D and 3D texture-based imaging biomarkers are also presented. This book provides a thorough background on texture analysis for graduate students and biomedical engineers from both industry and academia who have basic image processing knowledge. Medical doctors and biologists with no background in image processing will also find available methods and software tools for analyzing textures in medical images.
Applications of Computer Vision in Fashion and Textiles provides a systematic and comprehensive discussion of three key areas that are taking advantage of developments in computer vision technology, namely textile defect detection and quality control, fashion recognition and 3D modeling, and 2D and 3D human body modeling for improving clothing fit. It introduces the fundamentals of computer vision techniques for fashion and textile applications, also reviewing computer vision techniques for textile quality control, including chapters on wavelet transforms, Gibor filters, Fourier transforms, and neural network techniques. Final sections cover recognition, modeling, retrieval technologies and advanced human shape modeling techniques. The book is essential reading for scientists and researchers working in the field of fashion production, quality assurance, product development, textiles, fashion supply chain managers, R&D professionals and managers in the textile industry.
This book provides a pioneering approach to modeling the human diabetic patient using a software agent. It is based on two MASc (Master of Applied Science) theses: one looking at the evolution of the patient agent in time, and another looking the interaction of the patient agent with the healthcare system. It shows that the software agent evolves in a manner analogous to the human patient and exhibits typical attributes of the illness such as reacting to food consumption, medications, and activity. This agent model can be used in a number of different ways, including as a prototype for a specific human patient with the purpose of helping to identify when that patient's condition deviates from normal variations. The software agent can also be used to study the interaction between the human patient and the health care system. This book is of interest to anyone involved in the management of diabetic patients or in societal research into the management of diabetes. The diabetic patient agent was developed using the Ackerman model for diabetes, but this model can be easily adapted for any other model subject with the necessary physiological data to support that model.
Advanced research in the field of mechatronics and robotics represents a unifying interdisciplinary and intelligent engineering science paradigm. It is a holistic, concurrent, and interdisciplinary engineering science that identifies novel possibilities of synergizing and fusing different disciplines. The Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics is a collection of innovative research on the methods and applications of knowledge in both theoretical and practical skills of intelligent robotics and mechatronics. While highlighting topics including green technology, machine learning, and virtual manufacturing, this book is ideally designed for researchers, students, engineers, and computer practitioners seeking current research on developing innovative ideas for intelligent robotics and autonomous and smart interdisciplinary mechatronic products.
This book focuses on modelling and simulation, control and optimization, signal processing, and forecasting in selected nonlinear dynamical systems, presenting both literature reviews and novel concepts. It develops analytical or numerical approaches, which are simple to use, robust, stable, flexible and universally applicable to the analysis of complex nonlinear dynamical systems. As such it addresses key challenges are addressed, e.g. efficient handling of time-varying dynamics, efficient design, faster numerical computations, robustness, stability and convergence of algorithms. The book provides a series of contributions discussing either the design or analysis of complex systems in sciences and engineering, and the concepts developed involve nonlinear dynamics, synchronization, optimization, machine learning, and forecasting. Both theoretical and practical aspects of diverse areas are investigated, specifically neurocomputing, transportation engineering, theoretical electrical engineering, signal processing, communications engineering, and computational intelligence. It is a valuable resource for students and researchers interested in nonlinear dynamics and synchronization with applications in selected areas.
This book addresses two of the most difficult and computationally intractable classes of problems: discrete resource constrained scheduling, and discrete-continuous scheduling. The first part of the book discusses problems belonging to the first class, while the second part deals with problems belonging to the second class. Both parts together offer valuable insights into the possibility of implementing modern techniques and tools with a view to obtaining high-quality solutions to practical and, at the same time, computationally difficult problems. It offers a valuable source of information for practitioners dealing with the real-world scheduling problems in industry, management and administration. The authors have been working on the respective problems for the last decade, gaining scientific recognition through publications and active participation in the international scientific conferences, and their results are obtained using population-based methods. Dr E. Ratajczk-Ropel explores multiple agent and A-Team concepts, while Dr A. Skakovski focuses on evolutionary algorithms with a particular focus on the population learning paradigm.
The volume "Modern Information Processing: From Theory to
Applications," edited by Bernadette Bouchon-Meunier, Giulianella
Coletti and Ronald Yager, is a collection of carefully selected
papers drawn from the program of IPMU'04, which was held in
Perugia, Italy.
This book features selected papers presented at the 14th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2019, held in Kursk, Russia, on April 17-20, 2019. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2019 conference was held with the XIII International Scientific and Technical Conference "Vibration 2019", and was organized by Saint Petersburg State University of Aerospace Instrumentation (SUAI), Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) and the Southwest State University (SWSU) in with cooperation Russian Foundation for Basic Research (project No. 19-08-20021). |
You may like...
Advanced Introduction to Artificial…
Tom Davenport, John Glaser, …
Paperback
R617
Discovery Miles 6 170
|