![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
This book provides an overview of the basic concepts of a systems theoretical perspective using families and family therapy as examples and illustrations of their application in professional practice. This meta-perspective focuses on viewing problems in context. The difference between first-order and second-order cybernetics is explicated. Readers then are invited to see themselves as parts of the systems with which they are working consistent with a second-order cybernetics perspective. Along the way a difference between modernism and post-modernism as well as constructionism and social constructionism also are described. In addition, theories of individual and family development are presented with implications for their use in family therapy. The book concludes with more than 100 examples of how the meta-perspective of systems theory can be used in work with families.
This volume collects the edited and reviewed contributions presented in the 5th iTi Conference in Bertinoro covering fundamental aspects in turbulent flows. In the spirit of the iTi initiative, the volume is produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. Turbulence presents a large number of aspects and problems, which are still unsolved and which challenge research communities in engineering and physical sciences both in basic and applied research. The book presents recent advances in theory related to new statistical approaches, effect of non-linearities and presence of symmetries. This edition presents new contributions related to the physics and control of laminar-turbulent transition in wall-bounded flows, which may have a significant impact on drag reduction applications. Turbulent boundary layers, at increasing Reynolds number, are the main subject of both computational and experimental long research programs aimed at improving our knowledge on scaling, energy distribution at different scales, structure eduction, roughness effects to name only a few. Like previous editions several numerical and experimental analysis of complex flows, mostly related to applications, are presented. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Theory, II Stability, III Wall bounded flows, IV, Complex flows, V Acoustic, VI Numerical methods. The volume is dedicated to the memory of Prof. Rudolf Friedrich who prematurely died in Munster/Germany on the 16th of August 2012. In his honor the conference has started with a special session dedicated to his work.
The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.
This volume is dedicated to Leonid Lerer on the occasion of his seventieth birthday. The main part presents recent results in Lerer's research area of interest, which includes Toeplitz, Toeplitz plus Hankel, and Wiener-Hopf operators, Bezout equations, inertia type results, matrix polynomials, and related areas in operator and matrix theory. Biographical material and Lerer's list of publications complete the volume.
This volume presents various aspects of non-integer order systems, also known as fractional systems, which have recently attracted an increasing attention in the scientific community of systems science, applied mathematics, control theory. Non-integer systems have become relevant for many fields of science and technology exemplified by the modeling of signal transmission, electric noise, dielectric polarization, heat transfer, electrochemical reactions, thermal processes, acoustics, etc. The content is divided into six parts, every of which considers one of the currently relevant problems. In the first part the Realization problem is discussed, with a special focus on positive systems. The second part considers stability of certain classes of non-integer order systems with and without delays. The third part is focused on such important aspects as controllability, observability and optimization especially in discrete time. The fourth part is focused on distributed systems where non-integer calculus leads to new and interesting results. The next part considers problems of solutions and approximations of non-integer order equations and systems. The final and most extensive part is devoted to applications. Problems from mechatronics, biomedical engineering, robotics and others are all analyzed and solved with tools from fractional systems. This volume came to fruition thanks to high level of talks and interesting discussions at RRNR 2013 - 5th Conference on Non-integer Order Calculus and its Applications that took place at AGH University of Science and Technology in Krakow, Poland, which was organized by the Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering.
Structured Controllers for Uncertain Systems focuses on the development of easy-to-use design strategies for robust low-order or fixed-structure controllers (particularly the industrially ubiquitous PID controller). These strategies are based on a recently-developed stochastic optimization method termed the "Heuristic Kalman Algorithm" (HKA) the use of which results in a simplified methodology that enables the solution of the structured control problem without a profusion of user-defined parameters. An overview of the main stochastic methods employable in the context of continuous non-convex optimization problems is also provided and various optimization criteria for the design of a structured controller are considered; H , H2, and mixed H2/H each merits a chapter to itself. Time-domain-performance specifications can be easily incorporated in the design.
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The second volume of this two-volume work covers a variety of topics related to behavioral systems and robust control. After giving a detailed account of the state-of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of behavioral systems and robust control for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants' ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the workshop.
In this book for the first time two scientific fields - consensus formation and synchronization of communications - are presented together and examined through their interrelational aspects, of rapidly growing importance. Both fields have indeed attracted enormous research interest especially in relation to complex networks. In networks of dynamic systems (or agents), consensus means to reach an agreement regarding a certain quantity of interest that depends on the state of all dynamical systems (agents). Consensus problems have a long history in control theory and computer sciences, and form the foundation of the field of distributed computing. Synchronization, which defines correlated-in-time behavior between different processes and roots going back to Huygens to the least, is now a highly popular, exciting and rapidly developing topic, with applications ranging from biological networks to mathematical epidemiology, and from processing information in the brain to engineering of communications devices. The book reviews recent finding in both fields and describes novel approaches to consensus formation, where consensus is realized as an instance of the nonlinear dynamics paradigm of chaos synchronization. The chapters are written by world-known experts in both fields and cover topics ranging from fundaments to various applications of consensus and synchronization.
This book is based on the outcome of the "2012 Interdisciplinary Symposium on Complex Systems" held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexity of rugged landscapes, and more. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications. The authors and editors hope that readers will be inspired to do their own experiments and simulations, based on information reported in this book, thereby moving beyond the scope of the book.
This monograph presents a systematic top-down approach to distributed control synthesis of discrete-event systems (DES). The approach is called supervisor localization; its essence is the allocation of external supervisory control action to individual component agents as their internal control strategies. The procedure is: first synthesize a monolithic supervisor, to achieve globally optimal and nonblocking controlled behavior, then decompose the monolithic supervisor into local controllers, one for each agent. The collective behavior of the resulting local controllers is identical to that achieved by the monolithic supervisor. The basic localization theory is first presented in the Ramadge-Wonham language-based supervisory control framework, then demonstrated with distributed control examples of multi-robot formations, manufacturing systems, and distributed algorithms. An architectural approach is adopted to apply localization to large-scale DES; this yields a heterarchical localization procedure, which is also demonstrated with benchmark examples. Moreover, a state-based framework, state-tree structures, is exploited for efficient computation of localization. Finally localization is extended to timed DES, which addresses distributed control synthesis with temporal specifications. The authors' TCT software and sourcecode will help the reader to reproduce the results demonstrated in the examples. Academic researchers and graduate students interested in discrete-event and distributed systems and control will find this book an instructive resource. It will also be useful for researchers in manufacturing, supply-chain and logistics and practitioners in related industries.
How do we design a self-organizing system? Is it possible to validate and control non-deterministic dynamics? What is the right balance between the emergent patterns that bring robustness, adaptability and scalability, and the traditional need for verification and validation of the outcomes? The last several decades have seen much progress from original ideas of "emergent functionality" and "design for emergence", to sophisticated mathematical formalisms of "guided self-organization". And yet the main challenge remains, attracting the best scientific and engineering expertise to this elusive problem. This book presents state-of-the-practice of successfully engineered self-organizing systems, and examines ways to balance design and self-organization in the context of applications. As demonstrated in this second edition of Advances in Applied Self-Organizing Systems, finding this balance helps to deal with practical challenges as diverse as navigation of microscopic robots within blood vessels, self-monitoring aerospace vehicles, collective and modular robotics adapted for autonomous reconnaissance and surveillance, self-managing grids and multiprocessor scheduling, data visualization and self-modifying digital and analog circuitry, intrusion detection in computer networks, reconstruction of hydro-physical fields, traffic management, immunocomputing and nature-inspired computation. Many algorithms proposed and discussed in this volume are biologically inspired, and the reader will also gain an insight into cellular automata, genetic algorithms, artificial immune systems, snake-like locomotion, ant foraging, birds flocking, neuromorphic circuits, amongst others. Demonstrating the practical relevance and applicability of self-organization, Advances in Applied Self-Organizing Systems will be an invaluable tool for advanced students and researchers in a wide range of fields.
This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of current research, making it a suitable reference for graduate students and researchers in the field of networks of linear systems. Part I can be used as the basis for a first course in Algebraic System Theory, while Part II serves for a second, advanced, course on linear systems. Finally, Part III, which is largely independent of the previous parts, is ideally suited for advanced research seminars aimed at preparing graduate students for independent research. "Mathematics of Networks of Linear Systems" contains a large number of exercises and examples throughout the text making it suitable for graduate courses in the area.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This third volume concentrates on reviewing further relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such fluctuation relations and chaotic dynamics in physics, fractals and their applications in epileptic seizures, as well as chaos synchronization. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a 'recipe book' full of tried and tested, successful engineering applications.
Networked control systems are increasingly ubiquitous today, with applications ranging from vehicle communication and adaptive power grids to space exploration and economics. The optimal design of such systems presents major challenges, requiring tools from various disciplines within applied mathematics such as decentralized control, stochastic control, information theory, and quantization. A thorough, self-contained book, Stochastic Networked Control Systems: Stabilization and Optimization under Information Constraints aims to connect these diverse disciplines with precision and rigor, while conveying design guidelines to controller architects. Unique in the literature, it lays a comprehensive theoretical foundation for the study of networked control systems, and introduces an array of concrete tools for work in the field. Salient features included: * Characterization, comparison and optimal design of information structures in static and dynamic teams. Operational, structural and topological properties of information structures in optimal decision making, with a systematic program for generating optimal encoding and control policies. The notion of signaling, and its utilization in stabilization and optimization of decentralized control systems. * Presentation of mathematical methods for stochastic stability of networked control systems using random-time, state-dependent drift conditions and martingale methods. * Characterization and study of information channels leading to various forms of stochastic stability such as stationarity, ergodicity, and quadratic stability; and connections with information and quantization theories. Analysis of various classes of centralized and decentralized control systems. * Jointly optimal design of encoding and control policies over various information channels and under general optimization criteria, including a detailed coverage of linear-quadratic-Gaussian models. * Decentralized agreement and dynamic optimization under information constraints. This monograph is geared toward a broad audience of academic and industrial researchers interested in control theory, information theory, optimization, economics, and applied mathematics. It could likewise serve as a supplemental graduate text. The reader is expected to have some familiarity with linear systems, stochastic processes, and Markov chains, but the necessary background can also be acquired in part through the four appendices included at the end. * Characterization, comparison and optimal design of information structures in static and dynamic teams. Operational, structural and topological properties of information structures in optimal decision making, with a systematic program for generating optimal encoding and control policies. The notion of signaling, and its utilization in stabilization and optimization of decentralized control systems. * Presentation of mathematical methods for stochastic stability of networked control systems using random-time, state-dependent drift conditions and martingale methods. * Characterization and study of information channels leading to various forms of stochastic stability such as stationarity, ergodicity, and quadratic stability; and connections with information and quantization theories. Analysis of various classes of centralized and decentralized control systems. * Jointly optimal design of encoding and control policies over various information channels and under general optimization criteria, including a detailed coverage of linear-quadratic-Gaussian models. * Decentralized agreement and dynamic optimization under information constraints. This monograph is geared toward a broad audience of academic and industrial researchers interested in control theory, information theory, optimization, economics, and applied mathematics. It could likewise serve as a supplemental graduate text. The reader is expected to have some familiarity with linear systems, stochastic processes, and Markov chains, but the necessary background can also be acquired in part through the four appendices included at the end.
Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: * a unified framework for filtering and control problems in complex communication networks with limited bandwidth; * new concepts such as random sensor and signal saturations for more realistic modeling; and * demonstration of the use of techniques such as the Hamilton-Jacobi-Isaacs, difference linear matrix, and parameter-dependent matrix inequalities and sums of squares to handle the computational challenges inherent in these systems. The collection of recent research results presented in Nonlinear Stochastic Processes will be of interest to academic researchers in control and signal processing. Graduate students working with communication networks with lossy information and control of stochastic systems will also benefit from reading the book.
Building upon a long tradition of scientifi c conferences dealing with problems of reliability in technical systems, in 2006 Department of Computer Engineering at Wroclaw University of Technology established DepCoS-RELCOMEX series of events in order to promote a comprehensive approach to evaluation of system performability which is now commonly called dependability. Contemporary complex systems integrate variety of technical, information, soft ware and human (users, administrators and management) resources. Their complexity comes not only from involved technical and organizational structures but mainly from complexity of information processes that must be implemented in specific operational environment (data processing, monitoring, management, etc.). In such a case traditional methods of reliability evaluation focused mainly on technical levels are insufficient and more innovative, multidisciplinary methods of dependability analysis must be applied. Selection of submissions for these proceedings exemplify diversity of topics that must be included in such analyses: tools, methodologies and standards for modelling, design and simulation of the systems, security and confidentiality in information processing, specific issues of heterogeneous, today often wireless, computer networks, or management of transportation networks. In addition, this edition of the conference hosted the 5th CrISS-DESSERT Workshop devoted to the problems of security and safety in critical information systems.
Hyperbolic geometry is an essential part of theoretical astrophysics and cosmology. Besides specialists of these domains, many specialists of new domains start to show a growing interest both to hyperbolic geometry and to cellular automata. This is especially the case in biology and computer science. This book gives the reader a deep and efficient introduction to an algorithmic approach to hyperbolic geometry. It focuses the attention on the possibilities to obtain in this frame the power of computing everything a computer can compute, that is to say: universality. The minimal ways to get universality are investigated in a large family of tilings of the hyperbolic plane. In several cases the best results are obtained.In all cases, the results are close to the theoretical best values. This gives rise to fantastic illustrations: the results are jewels in all meanings of the word. ------------------------ Maurice MARGENSTERN is professor emeritus at the University of Lorraine, he is a member of LITA, the research unit of computer science in the campus of Metz of this university. Professor Margenstern is amongst top world experts in theory of computation, mathematical machines and geometry. He is a pioneer in cellular automata in hyperbolic spaces.
The book is a collection of peer-reviewed scientific papers submitted by active researchers in the 36th National System Conference (NSC 2012). NSC is an annual event of the Systems Society of India (SSI), primarily oriented to strengthen the systems movement and its applications for the welfare of humanity. A galaxy of academicians, professionals, scientists, statesman and researchers from different parts of the country and abroad are invited to attend the Conference. The book presents various research articles in the area of system modelling in all disciplines of engineering sciences as well as socio-economic systems. The book can be used as a tool for further research.
This original and timely monograph describes a unique self-contained excursion that reveals to the readers the roles of two basic cognitive abilities, i.e. intention recognition and arranging commitments, in the evolution of cooperative behavior. This book analyses intention recognition, an important ability that helps agents predict others' behavior, in its artificial intelligence and evolutionary computational modeling aspects, and proposes a novel intention recognition method. Furthermore, the book presents a new framework for intention-based decision making and illustrates several ways in which an ability to recognize intentions of others can enhance a decision making process. By employing the new intention recognition method and the tools of evolutionary game theory, this book introduces computational models demonstrating that intention recognition promotes the emergence of cooperation within populations of self-regarding agents. Finally, the book describes how commitment provides a pathway to the evolution of cooperative behavior, and how it further empowers intention recognition, thereby leading to a combined improved strategy.
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these methods assume that there are a small number of scenarios to be evaluated for calculation of the probabilistic objective function and constraints. This book begins to tackle these issues by describing a generalized method for stochastic nonlinear programming problems. This title is best suited for practitioners, researchers and students in engineering, operations research, and management science who desire a complete understanding of the BONUS algorithm and its applications to the real world.
This SpringerBrief gives the reader a detailed account of how cybersecurity in Israel has evolved over the past two decades. The formation of the regions cybersecurity strategy is explored and an in-depth analysis of key developments in cybersecurity policy is provided. The authors examine cybersecurity from an integrative national perspective and see it as a set of policies and actions with two interconnected goals: to mitigate security risks and increase resilience and leverage opportunities enabled by cyber-space. Chapters include an insight into the planning and implementation of the National Security Concept strategy which facilitated the Critical Infrastructure Protection (CIP) agreement in 2002, (one of the first of its kind), the foundation of the Israeli Cyber-strategy in 2011, and details of the current steps being taken to establish a National Cyber Security Authority (NCSA). Cybersecurity in Israel will be essential reading for anybody interested in cyber-security policy, including students, researchers, analysts and policy makers alike.
This book offers an overview of models, measurements, calculations and examples connecting musical acoustics and music psychology. Indeed, many mathematical formulations that explain musical acoustics can also be used to help predict human auditory perception.
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: innovative material on MDPs, both in constrained settings and with uncertain transition properties; game-theoretic method for solving MDPs; theories for developing roll-out based algorithms; and details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.
This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution, the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies and innovative examples.
It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of a high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory. |
![]() ![]() You may like...
Proceedings of International Joint…
Mohammad Shorif Uddin, Jagdish Chand Bansal
Hardcover
R5,688
Discovery Miles 56 880
Advanced Methodologies and Technologies…
D.B.A., Mehdi Khosrow-Pour,
Hardcover
R9,857
Discovery Miles 98 570
From Particle Systems to Partial…
Cedric Bernardin, Patricia Goncalves
Hardcover
R3,646
Discovery Miles 36 460
Evolutionary Optimization
Ruhul Sarker, Masoud Mohammadian, …
Hardcover
R4,599
Discovery Miles 45 990
|