![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
Environmental Systems Engineering explains how to use new computerized tools to tackle problems in systems engineering. This book covers: expert systems, fuzzy logic, networks, process dynamics, control and statistical approaches to systems analysis. Computer simulation, mathematical models, and newer methods that apply artificial intelligence and neural networks to environmental problems are emphasized. Each book topic is supported by an interactive web site featuring computer graphics, teaching games and navigational aids. Topics are developed through the use of computer exercises using practical problems as examples.
Agent-based modeling and social simulation have emerged as an interdisciplinary area of social science that includes computational economics, organizational science, social dynamics, and complex systems. This area contributes to enriching our understanding of the fundamental processes of social phenomena caused by complex interactions among agents. Bringing together diverse approaches to social simulation and research agendas, this book presents a unique collection of contributions from the Second World Congress on Social Simulation, held in 2008 at George Mason University in Washington DC, USA. This book in particular includes articles on norms, diffusion, social networks, economy, markets and organizations, computational modeling, and programming environments, providing new hypotheses and theories, new simulation experiments compared with various data sets, and new methods for model design and development. These works emerged from a global and interdisciplinary scientific community of the three regional scientific associations for social simulation: the North American Association for Computational Social and Organizational Science (NAACSOS; now the Computational Social Science Society, CSSS), the European Social Simulation Association (ESSA), and the Pacific Asian Association for Agent-bBased Approach in Social Systems Sciences (PAAA)."
Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.
BACKGROUND OF THE PROJECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 FINANCING THE PROJECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DELIVERY OF THE DULLES GREENWAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 OPERATING RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CONCLUDING NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CHAPTER 3 INTERNATIONAL ARRIVALS BUILDING AT JOHN F. KENNEDY INTERNATIONAL AIRPORT . . . . . . . . . . . . . . . . . . . 33 INFRASTRUCTURE DEVELOPMENT SYSTEMS IDS-98-I-201 . . . . . . . . . . . . . . . . . 33 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 HISTORY OF THE JOHN F. KENNEDY INTERNATIONAL AIRPORT . . . . . . . . . . 34 EARLIER PLANS FOR INTERNATIONAL ARRIVALS BUILDING . . . . . . . . . . . . . . . 34 HISTORY OF THE PORT AUTHORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 NEW PLANS FOR INTERNATIONAL ARRIVALS BUILDING . . . . . . . . . . . . . . . . . . . . . 35 TERMINAL ONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 FEASIBILITY ANALYSIS OF THE lAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 PRELIMINARY DESIGN -1993 TO 1994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 THE PRE-QUALIFICATION AND BIDDING PROCESS - 1995 TO 1997 . . . . . . 41 NEW YORK LAND LEASE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CONSORTIUM MEMBERS _ JFK INTERNATIONAL AIR TERMINAL LLC 45 THE AMSTERDAM AIRPORT MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 FINANCING STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CLOSING THE DEAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CHAPTER 4 THE SR 91 EXPRESS LANES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 INFRASTRUCTURE DEVELOPMENT SYSTEMS IDS-97-T-012 . . . . . . . . . . . . . . . . 53 THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Key Features of AB 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 THE HISTORY OF PRIVATE TOLL ROADS IN THE UNITED STATES . . . . . . . . 55 CAL TRANS' PRE-QUALIFICATION PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 THE CALL FOR COMPETITIVE CONCEPTUAL PROPOSALS . . . . . . . . . . . . . . . . . . . . . 57 THE PROPOSALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 BRIEF HISTORY OF SR 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 KEY FEATURES OF THE PROPOSED SR 91 TOLL EXPRESSWAY . . . . . . . . . . . . 60 Consortium Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 VB Contents THE PROPOSED DEVELOPMENT FRANCHISE AGREEMENT . . . . . . . . . . . . . . . . . . . 61 FINANCING PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 MATT MOORE'S TASKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 CHAPTERS SANTA ANA VIADUCT EXPRESS . . . . . . . . . . . . . . . . . . . . . . . . . 71 INFRASTRUCTURE DEVELOPMENT SYSTEMS IDS-97 -T -011 . . . . . . . . . . . . . . . . 71 THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Salient Features of AB 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 CALTRANS' PRE-QUALIFICATION PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations.
The subject of the book is to present the modeling, parameter estimation and other aspects of the identification of nonlinear dynamic systems. The treatment is restricted to the input-output modeling approach. Because of the widespread usage of digital computers discrete time methods are preferred. Time domain parameter estimation methods are dealt with in detail, frequency domain and power spectrum procedures are described shortly. The theory is presented from the engineering point of view, and a large number of examples of case studies on the modeling and identifications of real processes illustrate the methods. Almost all processes are nonlinear if they are considered not merely in a small vicinity of the working point. To exploit industrial equipment as much as possible, mathematical models are needed which describe the global nonlinear behavior of the process. If the process is unknown, or if the describing equations are too complex, the structure and the parameters can be determined experimentally, which is the task of identification. The book is divided into seven chapters dealing with the following topics: 1. Nonlinear dynamic process models 2. Test signals for identification 3. Parameter estimation methods 4. Nonlinearity test methods 5. Structure identification 6. Model validity tests 7. Case studies on identification of real processes Chapter I summarizes the different model descriptions of nonlinear dynamical systems.
Environmental Systems Engineering and Economics emphasizes the application of optimization, economics, and systems engineering to problems in environmental resources management. This senior level/graduate textbook introduces optimization theory and algorithms that have been successful in resolving water quality and groundwater management problems. Both linear programming and nonlinear optimization are presented. Multiobjective optimization and the linked simulation-optimization (LSO) methodology are also introduced. The basic principles of economics and engineering economics are also discussed to provide a framework for economic decision making. This text contains numerous example problems. Case studies are presented that address water resources management issues in the north China plain, the control of saltwater intrusion in Jakarta, Indonesia, and groundwater resources management in the Yun Lin basin, Taiwan.
Impulsive Control in Continuous and Discrete-Continuous Systems is an up-to-date introduction to the theory of impulsive control in nonlinear systems. This is a new branch of the Optimal Control Theory, which is tightly connected to the Theory of Hybrid Systems. The text introduces the reader to the interesting area of optimal control problems with discontinuous solutions, discussing the application of a new and effective method of discontinuous time-transformation. With a large number of examples, illustrations, and applied problems arising in the area of observation control, this book is excellent as a textbook or reference for a senior or graduate-level course on the subject, as well as a reference for researchers in related fields.
In wntmg this monograph my aim has been to present a "geometric" approach to the structural synthesis of multivariable control systems that are linear, time-invariant and of finite dynamic order. The book is ad dressed to graduate students specializing in control, to engineering scientists involved in control systems research and development, and to mathemati cians interested in systems control theory. The label "geometric" in the title is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometric) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometric prop erties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, around fifteen years ago. But secondly and of greater interest, the geometric setting rather quickly sug gested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arithmetic as soon as you want to compute. The essence of the "geometric" approach is just this: instead of looking directly for a feedback law (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say Y. Then, if all is well, you may calculate F from Y quite easily."
Perspectives On Software Requirements presents perspectives on several current approaches to software requirements. Each chapter addresses a specific problem where the authors summarize their experiences and results to produce well-fit and traceable requirements. Chapters highlight familiar issues with recent results and experiences, which are accompanied by chapters describing well-tuned new methods for specific domains.
A modern mechanical structure must work at high speed and with high precision in space and time, in cooperation with other machines and systems. All this requires accurate dynamic modelling, for instance, recognizing Coriolis and centrifugal forces, strong coupling effects, flexibility of links, large angles articulation. This leads to a motion equation which must be highly nonlinear to describe the reality. r1oreover, work on the manufacturing floor requires coordination between nachines, between each machine and a conveyor, and demands robustness of the controllers against uncertainty in payload, gravity, external perturbations etc. This requires adaptive controllers and system coordination, and perhaps a self organizing structure. The machines become complex, strongly nonlinear and strongly coupled mechanical systems with many degrees of freedom, controlled by sophisticated mathematical programs. The design of such systems needs basic research in Control and System Dynamics, as well as in Decision Making Theory (Dynamic Games), not only in the use of these disciplines, but in their adjustment to the present demand. This in turn generates the need to prepare engineering students for the job by the teaching of more sophisti cated techniques in control and Mechanics than those contained in previous curricula. On the other hand, all that was mentioned above regarding the design of machines applies equally well to other presently designed and used mechan ical structures or systems."
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
OO It is a matter of general consensus that in the last decade the H _ optimization for robust control has dominated the research effort in control systems theory. Much attention has been paid equally to the mathematical instrumentation and the computational aspects. There are several excellent monographs that cover the standard topics in the area. Among the recent issues we have to cite here Linear Robust Control authored by Green and Limebeer (Prentice Hall 1995), Robust Controller Design Using Normalized Coprime Factor Plant Descriptions - by McFarlane and Glover (Springer Verlag 1989), Robust and Optimal Control - by Zhou, Doyle and Glover (Prentice Hall 1996). Thus, when the authors of the present monograph decided to start the work they were confronted with a very rich literature on the subject. However two reasons motivated their initiative. The first concerns the theory in which the whole development of the book was embedded. As is well known, there are several ways of approach oo ing H and robust control theory. Here we mention three relevant direc tions chronologically ordered: a) the first makes use of a generalization of the Beurling-Lax theorem to Krein spaces; b) the second makes use of a generalization of Nevanlinna-Pick interpolation theory and commutant lifting theorem; c) the third, and probably the most attractive from an el evate engineering viewpoint, is the two Riccati equations based approach which offers a complete solution in state space form."
Information Macrodynamics (IMD) belong to an interdisciplinary science that represents a new theoretical and computer-based methodology for a system informational descriptionand improvement,including various activities in such areas as thinking, intelligent processes, communications, management, and other nonphysical subjects with their mutual interactions, informational superimposition, and theinformation transferredbetweeninteractions. The IMD is based on the implementation of a single concept by a unique mathematical principle and formalism, rather than on an artificial combination of many arbitrary, auxiliary concepts and/or postulates and different mathematical subjects, such as the game, automata, catastrophe, logical operations theories, etc. This concept is explored mathematically using classical mathematics as calculus of variation and the probability theory, which are potent enough, without needing to developnew,specifiedmathematical systemicmethods. The formal IMD model automatically includes the related results from other fields, such as linear, nonlinear, collective and chaotic dynamics, stability theory, theory of information, physical analogies of classical and quantum mechanics, irreversible thermodynamics, andkinetics. The main IMD goal is to reveal the information regularities, mathematically expressed by the considered variation principle (VP), as a mathematical tool to extractthe regularities and define the model, whichdescribes theregularities. The IMD regularities and mechanisms are the results of the analytical solutions and are not retained by logical argumentation, rational introduction, and a reasonable discussion. The IMD's information computer modeling formalism includes a human being (as an observer, carrier and producer ofinformation), with a restoration of the model during the objectobservations.
A. K. TURNER Department of Geology and Geological Engineering Colorado School of Mines Golden, Colorado 80401 USA Geology deals with three-dimensional data. Geoscientists are concerned with three dimensional spatial observations, measurements, and explanations of a great variety of phenomena. The representation of three-dimensional data has always been a problem. Prior to computers, graphical displays involved specialized maps, cross-sections, fence diagrams, and geometrical constructions such as stereonets. All were designed to portray three-dimensional relationships on two-dimensional paper products, and all were time consuming to develop. Until recently, computers were of little assistance to three-dimensional data handling and representation problems. Memory was too expensive to handle the huge amounts of data required by three-dimensional assessments; computational speeds were too slow to perform the necessary calculations within a reasonable time; and graphical displays had too Iowa resolution or were much too expensive to produce useful visualizations. Much experience was gained with two-dimensional geographic information systems (GIS), which were applied to many land-use management and resource assessment problems. The two-dimensional GIS field matured rapidly in the late 1980's and became widely accepted. The advent of the modern computer workstation, with its enhanced memory and graphical capabilities at ever more affordable prices, has largely overcome these earlier constraints.
Geometric constraint programming increases flexibility in CAD
design specifications and leads to new conceptual design
paradigms.
Within 50 years computers could have capabilities rivaling that of the human brain. Effective utilization of such new technologies poses a significant challenge to the computer science community, which finds an ever increasing number of complex applications within its technological grasp. In addition to increased complexity, most, if not all, of these applications are also accompanied by an inherent increase in the consequences associated with their failure, resulting in the construction of increasingly high consequence complex systems. Systems that fall within this domain are beyond the ability to construct in a brute force manner. There are two major challenges in developing such systems: manage complexity and provide sufficient evidence that the system satisfies dependability constraints. Society is tacitly relying on the research community to solve these problems on a timetable satisfying the needs of industry. While impressive results have been obtained, the research community is still, to some extent, hamstrung by the lack of realistic case study problems against which to benchmark new techniques and approaches.The purpose of High Integrity Software is to explore a cross-section of some of the most promising areas of research in the construction of high consequence complex systems, for example, a case study involving the Bay Area Rapid Transit (BART) system. Because of its scope and complexity, the BART case study is being recognized by many in the formal methods community as one of the definitive case study problems, and as such provides a valuable insight into the challenges that must be faced in the upcoming years. High Integrity Software is suitable as a secondary text for a graduate level course, and as a reference for researchers and practitioners in industry.
This unique book is the only recent summary presenting a comprehensive, up-to-date and detailed treatment of relay feedback theory, the use of relay feedback for process identification and the use of identified models for general control design in a single volume.
Control technology is a new learning environment which offers the opportunity to take up the economic and educational challenge of enabling people to adapt to new technologies and use them to solve problems. Giving young children (and also adults) easy access to control technology introduces them to a learning environment where they can build their knowledge across a range of topics. As they build and program their own automata and robots, they learn to solve problems, work incollaboration, and be creative. They also learn more about science, electronics, physics, computer literacy, computer assisted manufacturing, and so on. This book, based on a NATO Advanced Research Workshop in the Special Programme on Advanced Educational Technology, presents a cross-curricular approach to learning about control technology. The recommended methodology is active learning, where the teacher's role is to stimulate the learner to build knowledge by providing him/her with appropriate materials (hardware and software) and suggestions to develop the target skills. The results are encouraging, although more tools are needed to help the learner to generalize from his/her concrete experiment in control technology as well as to evaluate its effect on the target skills. The contributions not only discuss epistemological controversies linked to such learning environments as control technology, but also report on the state of the art and new developments in the field and present some stimulating ideas.
There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling. This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include: An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters. An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors. Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms. This book is suitable for students and researches interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required."
The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.
The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.
An open process of restandardization, conducted by the IEEE, has led to the definitions of the new VHDL standard. The changes make VHDL safer, more portable, and more powerful. VHDL also becomes bigger and more complete. The canonical simulator of VHDL is enriched by new mechanisms, the predefined environment is more complete, and the syntax is more regular and flexible. Discrepancies and known bugs of VHDL'87 have been fixed. However, the new VHDL'92 is compatible with VHDL'87, with some minor exceptions. This book presents the new VHDL'92 for the VHDL designer. New features ar explained and classified. Examples are provided, each new feature is given a rationale and its impact on design methodology, and performance is analysed. Where appropriate, pitfalls and traps are explained. The VHDL designer will quickly be able to find the feature needed to evaluate the benefits it brings, to modify previous VHDL'87 code to make it more efficient, more portable, and more flexible. VHDL'92 is the essential update for all VHDL designers and managers involved in electronic design.
The International Conference on Linear Statistical Inference LINSTAT'93 was held in Poznan, Poland, from May 31 to June 4, 1993. The purpose of the confer ence was to enable scientists, from various countries, engaged in the diverse areas of statistical sciences and practice to meet together and exchange views and re sults related to the current research on linear statistical inference in its broadest sense. Thus, the conference programme included sessions on estimation, prediction and testing in linear models, on robustness of some relevant statistical methods, on estimation of variance components appearing in linear models, on certain gen eralizations to nonlinear models, on design and analysis of experiments, including optimality and comparison of linear experiments, and on some other topics related to linear statistical inference. Within the various sessions 22 invited papers and 37 contributed papers were presented, 12 of them as posters. The conference gathered 94 participants from eighteen countries of Europe, North America and Asia. There were 53 participants from abroad and 41 from Poland. The conference was the second of this type, devoted to linear statistical inference. The first was held in Poznan in June, 4-8, 1984. Both belong to the series of confer ences on mathematical statistics and probability theory organized under the auspices of the Committee of Mathematics of the Polish Academy of Sciences, due to the ini tiative and efforts of its Mathematical Statistics Section. In the years 1973-1993 there were held in Poland nineteen such conferences, some of them international." |
![]() ![]() You may like...
Secret Service Journals - Assassination…
Paul J Hoffman, Doug Showalter
Hardcover
A Spectrum of Solutions for Clients with…
Rachel Bedard, Lorna Hecker
Hardcover
R4,023
Discovery Miles 40 230
|