![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences
Bioremediation is the use of microorganisms' metabolism to degrade waste contaminants (sewage, domestic, and industrial effluents) into non-toxic or less toxic materials by natural biological processes. Volume 2 offers new discussion of remediation through fungi-or mycoremediation-and its multifarious possibilities in applied remediation engineering and the future of environmental sustainability. Fungi have the biochemical and ecological capability to degrade environmental organic chemicals and to decrease the risk associated with metals, semi-metals, noble metals, and radionuclides, either by chemical modification or by manipulating chemical bioavailability. Additional expanded texts shows the capability of these fungi to form extended mycelia networks, the low specificity of their catabolic enzymes, and their use against pollutants as a growth substrate, making these fungi well suited for bioremediation processes. Their mycelia exhibit the robustness of adapting to highly limiting environmental conditions often experienced in the presence of persistent pollutants, which makes them more useful compared to other microbes. Despite dominating the living biomass in soil and being abundant in aquatic ecosystems, however, fungi have not been exploited for the bioremediation of such environments until this added Volume 2. This book covers the various types of fungi and associated fungal processes used to clean up waste and wastewaters in contaminated environments and discusses future potential applications.
The monograph introduces the reader to the world of inductive well logging - an established method for surveying the electrical conductivity of rocks surrounding a borehole. The emphasis is on developing a theory of inductive logging and on understanding logging tools basic physics, since this theory and understanding furnish valuable insights for inventing practical induction logging techniques.
This book offers a high-level summary of shallow magmatic systems (dykes, sills and laccoliths) to support geoscience master and PhD students, scientists and practicing professionals. The product of the LASI (Laccoliths and Sills conference) workshop, it comprises thematic sections written by one or more experts on the respective field. It features reviews concerning the physical properties of magma, geotectonic settings, and the structure of subvolcanic systems, as well as case studies on the best-known systems. The book provides readers a broad and comprehensive understanding of the subvolcanic perspective on pluton growth, which is relevant for mineralogical processes as well as the genesis of mineral deposits.
This book is the result of collaboration within the framework of the Third International Scientific School for Young Scientists held at the Ishlinskii Institute for Problems in Mechanics of Russian Academy of Sciences, 2017, November. The papers included describe studies on the dynamics of natural system - geosphere, hydrosphere, atmosphere-and their interactions, the human contribution to naturally occurring processes, laboratory modeling of earth and environment processes, and testing of new developed physical and mathematical models. The book particularly focuses on modeling in the field of oil and gas production as well as new alternative energy sources.
This book discusses how aquatic microbial communities develop interactive metabolic coordination both within and between species to optimize their energetics. It explains that microbial community structuration often includes functional stratification among a multitude of organisms that variously exist either suspended in the water, lodged in sediments, or bound to one another as biofilms on solid surfaces. The authors describe techniques that can be used for preparing and distributing microbiologically safe drinking water, which presents the challenge of successfully removing the pathogenic members of the aquatic microbial community and then safely delivering that water to consumers. Drinking water distribution systems have their own microbial ecology, which we must both understand and control in order to maintain the safety of the water supply. Since studying aquatic microorganisms often entails identifying them, the book also discusses techniques for successfully isolating and cultivating bacteria. As such, it appeals to microbiologists, microbial ecologists and water quality scientists.
The aim of this book is to present, in depth, updated information on soil and microbial processes involved in mixed plantations of Eucalyptus and N2-fixing species, especially Acacia mangium, focusing on Forestry, Soils, Biology, Ecosystem Services and Sustainability. The potential of substituting chemical N fertilizer by a consortium of leguminous species that fix atmospheric nitrogen is an interesting solution for a more sustainable, economically and environmentally sound forest system. Among the main topics, we present reference topics on soil microbiology, as biological nitrogen fixation, the role of mycorrhiza in mixed plantations, bio-indicators of soil quality, and plantgrowth promoting bacteria with biotechnological potential. Here we discuss Ecosystem services and ecological benefits of these systems, the invasive potential of A.mangium, as well as the regulations and perspectives of land use policies for mixed forests and their role in the sustainability of the system.
This book presents a summary of terrestrial microbial processes, which are a key factor in supporting healthy life on our planet. The authors explain how microorganisms maintain the soil ecosystem through recycling carbon and nitrogen and then provide insights into how soil microbiology processes integrate into ecosystem science, helping to achieve successful bioremediation as well as safe and effective operation of landfills, and enabling the design of composting processes that reduce the amount of waste that is placed in landfills. The book also explores the effect of human land use, including restoration on soil microbial communities and the response of wetland microbial communities to anthropogenic pollutants. Lastly it discusses the role of fungi in causing damaging, and often lethal, infectious diseases in plants and animals.
This book introduces readers to seismic inversion methods and their application to both synthetic and real seismic data sets. Seismic inversion methods are routinely used to estimate attributes like P-impedance, S-impedance, density, the ratio of P-wave and S-wave velocities and elastic impedances from seismic and well log data. These attributes help to understand lithology and fluid contents in the subsurface. There are several seismic inversion methods available, but their application and results differ considerably, which can lead to confusion. This book explains all popular inversion methods, discusses their mathematical backgrounds, and demonstrates their capacity to extract information from seismic reflection data. The types covered include model-based inversion, colored inversion, sparse spike inversion, band-limited inversion, simultaneous inversion, elastic impedance inversion and geostatistical inversion, which includes single-attribute analysis, multi-attribute analysis, probabilistic neural networks and multi-layer feed-forward neural networks. In addition, the book describes local and global optimization methods and their application to seismic reflection data. Given its multidisciplinary, integrated and practical approach, the book offers a valuable tool for students and young professionals, especially those affiliated with oil companies.
Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
From riverine operations in the American Civil War and China in the 1860s to the major fleet engagements of the World Wars, plus more recent naval actions in the Falklands/Malvenas War and Gulf War, Lindberg and Todd methodically show how geography has shaped the strategy, tactics, and tools of naval warfare. Alfred T. Mahan was perhaps the first naval professional to recognize and acknowledge fully the influence of geography on navies and naval warfare. Many of his principles of seapower were inherently geographical and influenced both what kind of naval force a state would possess and how it would be utilized. In the time that has passed since Mahan made his observations, naval warfare and navies have experienced major technological changes, yet geographical factors continue to exert their influence on how navies fight, how they are structured, and the design of the ships that they deploy. After providing a comprehensive review of geostrategic theory and its application to naval warfare, the book is organized by major operational environments in which such warfare occurs--the high seas, littoral regions, and inland waterways. Lindberg and Todd illustrate how such geographical factors as distance, location, surface, and subsurface conditions influence naval operations, including fleet-to-fleet engagements, amphibious assault, coastal defense, logistical support, and riverine actions. A separate chapter takes an in-depth look at the ways in which geography influences navies themselves with issues such as primary mission type, force structure development, and ship design. Through the use of historical case studies, this volume applies long held geographical concepts to fundamental naval theories and practices to illustrate just how pervasive geography's influence has been during the past 140 years.
This book pioneers a novel approach to investigate the effects of pressure on fission tracks, a geological problem that has remained unsolved for 60 years. While conventional techniques to study fission tracks were limited in precision, this book overcomes such issues by using state-of-the-art synchrotron-based x-ray scattering; a technique initially developed for applications in material science and biomedical research. The book provides an overview of the theory and application of small angle x-ray scattering (SAXS) on cylindrical ion tracks, including in-situ SAXS on ion tracks with simultaneous increases in temperature and pressure. As such it demonstrates a degree of characterisation normally not achievable with in-situ techniques. Further, it compares SAXS with small angle neutron scattering (SANS). This book has led to a range of publications and attracted the interest of the geological and material science communities. Daniel Schauries has been awarded several prizes for this research, including the Graduate Student Award of the Materials Research Society.
Advances in Sequence Stratigraphy, Volume Two covers current research across a wide range of stratigraphic disciplines, providing information on the most recent developments for the geoscientific research community. Chapters in this volume include Sequence Stratigraphy - Oman, Sequence Stratigraphy and diagenesis, Sequence Stratigraphy of Siliciclastic Systems, Upper Devonian Biostratigraphy, Event Stratigraphy and Late Fransian Kellwasser Extinction Bio-events in the Iowa Basin: Western Euramerica, Sea-level change and Sequence Stratigraphy, Sequence Stratigraphy: A Material-based Approach Versus A Time-Based Approach, and Anisian-Ladinian marker horizon: Implications for sequence stratigraphy and intra-tethyan correlation. This fully commissioned review publication aims to foster and convey progress in stratigraphy, including geochronology, magnetostratigraphy, lithostratigraphy, event-stratigraphy, isotope stratigraphy, astrochronology, climatostratigraphy, seismic stratigraphy, biostratigraphy, ice core chronology, cyclostratigraphy, palaeoceanography, sequence stratigraphy, and more.
This book maps extreme temperature increase under dangerous climate change scenarios in Brazil and their impacts on four key sectors: agriculture, health, biodiversity and energy. The book draws on a careful review of the literature and climate projections, including relative risk estimates. This synthesis summarizes the state-of-the-art knowledge and provides decision-makers with risk analysis tools, to be incorporated in public planning policy, in order to understand climate events which may occur and which may have significant consequences.
The research and review papers presented in this volume provide an overview of the main issues, findings, and open questions in cutting-edge research on the fields of modeling, optimization and dynamics and their applications to biology, economics, energy, finance, industry, physics and psychology. Given the scientific relevance of the innovative applications and emerging issues they address, the contributions to this volume, written by some of the world's leading experts in mathematics, economics and other applied sciences, will be seminal to future research developments and will spark future works and collaborations. The majority of the papers presented in this volume were written by participants of the 4th International Conference on Dynamics, Games and Science: Decision Models in a Complex Economy (DGS IV), held at the National Distance Education University (UNED) in Madrid, Spain in June 2016 and of the 8th Berkeley Bioeconomy Conference: The Future of Biofuels, held at the UC Berkeley Alumni House in April 2015.
This book comprises the select proceedings of the International Conference on Water, Environment, Energy and Society. The book is divided into three parts. The first part deals with some aspects of groundwater focusing on delineation of groundwater zones, spatio-temporal variability of groundwater, and aquifer vulnerability. The second part is on some aspects of groundwater recharge, dealing with recharge sources, management of recharge and recharge technology, change of land use / land cover on groundwater recharge. The concluding part covers groundwater quality, encompassing causes and sources of pollution, leachate migration, river bank filtration, variability of quality, assessment and management of quality. The book will be of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management will also find the book to be of value.
Against a background of extensive multi-disciplinary oceanographic investigations over a number of years, together with the long-term establishment of a Society and Institute, extensive information is available from studies undertaken in the estuarine and coastal waters of the Basque Country.
This book contains the scientific contributions to the 11th International Workshop on Bifurcation and Degradation in Geomaterials (IWBDG) held in Limassol-Cyprus, May 21-25, 2017. The IWBDG series have grown in size and scope, since their inception 30 years ago in Germany, covering more and wider areas of geomaterials and geomechanics research including modern trends. The papers cover a wide range of topics including advances in instabilities, localized and diffuse failure, micromechanical, multiscale phenomena, multiphysics modeling and other related topics. This volume gathers a series of manuscript by brilliant international scholars who work on modern recent advances in experimental, theoretical and numerical methods. The theoretical and applied mechanics are linked successfully with engineering applications in traditional and in emerging fields, such as geomechanics for the energy and the environment. The quality of the contributed papers has benefited from the peer review process by expert referees. This book can be used as a useful reference for research students, academics and practicing engineers who are interested in the instability and degradation problems in geomaterials, geomechanics, geotechnical engineering and other related applications.
Meeting the food requirements of an ever-increasing population is a pressing challenge for every country around the globe. Soil degradation has a negative impact on food security by reducing the cultivated land areas, while at the same time the world population is predicted to increase to 9.2 billion in 2050. Soil degradation adversely affects soil function and productivity and degraded soils now amount to 6 billion ha worldwide. The major factors are salinization, erosion, depletion of nutrients due to exhaustive agricultural practices and contamination with toxic metal ions and agrochemicals, which reduces the activity of soil microbe. In addition, poor soil management also decreases fertility. As such, measures are required to restore the soil health and productivity: organic matter, beneficial microorganisms and nutrient dynamics can all improve the physical, chemical and biological properties of soil. Understanding the role of soil health restoration and management in sustainability and nutritional security calls for a holistic approach to assess soil functions and examine the contributions of a particular management system within a defined timescale. Further, best management practices in cropping systems are important in ensuring sustainability and food and nutritional security without compromising the soil quality and productivity po tential. Rational soil management practices must allow environmentally and economically sustain able yields and restoration of soil health. |
![]() ![]() You may like...
|