Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Business & Economics > Economics > Econometrics
The book is a collection of essays in honour of Clive Granger. The chapters are by some of the world's leading econometricians, all of whom have collaborated with or studied with (or both) Clive Granger. Central themes of Granger's work are reflected in the book with attention to tests for unit roots and cointegration, tests of misspecification, forecasting models and forecast evaluation, non-linear and non-parametric econometric techniques, and overall, a careful blend of practical empirical work and strong theory. The book shows the scope of Granger's research and the range of the profession that has been influenced by his work.
Upon the backdrop of impressive progress made by the Indian economy during the last two decades after the large-scale economic reforms in the early 1990s, this book evaluates the performance of the economy on some income and non-income dimensions of development at the national, state and sectoral levels. It examines regional economic growth and inequality in income originating from agriculture, industry and services. In view of the importance of the agricultural sector, despite its declining share in gross domestic product, it evaluates the performance of agricultural production and the impact of agricultural reforms on spatial integration of food grain markets. It studies rural poverty, analyzing the trend in employment, the trickle-down process and the inclusiveness of growth in rural India. It also evaluates the impact of microfinance, as an instrument of financial inclusion, on the socio-economic conditions of rural households. Lastly, it examines the relative performance of fifteen major states of India in terms of education, health and human development. An important feature of the book is that it approaches these issues, applying rigorously advanced econometric methods, and focusing primarily on their regional disparities during the post-reform period vis-a-vis the pre-reform period. It offers important results to guide policies for future development.
This book presents the reader with new operators and matrices that arise in the area of matrix calculus. The properties of these mathematical concepts are investigated and linked with zero-one matrices such as the commutation matrix. Elimination and duplication matrices are revisited and partitioned into submatrices. Studying the properties of these submatrices facilitates achieving new results for the original matrices themselves. Different concepts of matrix derivatives are presented and transformation principles linking these concepts are obtained. One of these concepts is used to derive new matrix calculus results, some involving the new operators and others the derivatives of the operators themselves. The last chapter contains applications of matrix calculus, including optimization, differentiation of log-likelihood functions, iterative interpretations of maximum likelihood estimators and a Lagrangian multiplier test for endogeneity.
The Analytic Network Process (ANP), developed by Thomas Saaty in his work on multicriteria decision making, applies network structures with dependence and feedback to complex decision making. This new edition of Decision Making with the Analytic Network Process is a selection of the latest applications of ANP to economic, social and political decisions, and also to technological design. The ANP is a methodological tool that is helpful to organize knowledge and thinking, elicit judgments registered in both in memory and in feelings, quantify the judgments and derive priorities from them, and finally synthesize these diverse priorities into a single mathematically and logically justifiable overall outcome. In the process of deriving this outcome, the ANP also allows for the representation and synthesis of diverse opinions in the midst of discussion and debate. The book focuses on the application of the ANP in three different areas: economics, the social sciences and the linking of measurement with human values. Economists can use the ANP for an alternate approach for dealing with economic problems than the usual mathematical models on which economics bases its quantitative thinking. For psychologists, sociologists and political scientists, the ANP offers the methodology they have sought for some time to quantify and derive measurements for intangibles. Finally the book applies the ANP to provide people in the physical and engineering sciences with a quantitative method to link hard measurement to human values. In such a process, one is able to interpret the true meaning of measurements made on a uniform scale using a unit.
This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailed ness. These results motivate the development and applications of robust inference approaches under heavy tails, heterogeneity and dependence in observations. Several recently developed robust inference approaches are discussed and illustrated, together with applications.
Discover the Benefits of Risk Parity Investing Despite recent progress in the theoretical analysis and practical applications of risk parity, many important fundamental questions still need to be answered. Risk Parity Fundamentals uses fundamental, quantitative, and historical analysis to address these issues, such as: What are the macroeconomic dimensions of risk in risk parity portfolios? What are the appropriate risk premiums in a risk parity portfolio? What are market environments in which risk parity might thrive or struggle? What is the role of leverage in a risk parity portfolio? An experienced researcher and portfolio manager who coined the term "risk parity," the author provides investors with a practical understanding of the risk parity investment approach. Investors will gain insight into the merit of risk parity as well as the practical and underlying aspects of risk parity investing.
The book's comprehensive coverage on the application of econometric methods to empirical analysis of economic issues is impressive. It uncovers the missing link between textbooks on economic theory and econometrics and highlights the powerful connection between economic theory and empirical analysis perfectly through examples on rigorous experimental design. The use of data sets for estimation derived with the Monte Carlo method helps facilitate the understanding of the role of hypothesis testing applied to economic models. Topics covered in the book are: consumer behavior, producer behavior, market equilibrium, macroeconomic models, qualitative-response models, panel data analysis and time-series analysis. Key econometric models are introduced, specified, estimated and evaluated. The treatment on methods of estimation in econometrics and the discipline of hypothesis testing makes it a must-have for graduate students of economics and econometrics and aids their understanding on how to estimate economic models and evaluate the results in terms of policy implications.
Many economic and social surveys are designed as panel studies, which provide important data for describing social changes and testing causal relations between social phenomena. This textbook shows how to manage, describe, and model these kinds of data. It presents models for continuous and categorical dependent variables, focusing either on the level of these variables at different points in time or on their change over time. It covers fixed and random effects models, models for change scores and event history models. All statistical methods are explained in an application-centered style using research examples from scholarly journals, which can be replicated by the reader through data provided on the accompanying website. As all models are compared to each other, it provides valuable assistance with choosing the right model in applied research. The textbook is directed at master and doctoral students as well as applied researchers in the social sciences, psychology, business administration and economics. Readers should be familiar with linear regression and have a good understanding of ordinary least squares estimation.
Spatial Microeconometrics introduces the reader to the basic concepts of spatial statistics, spatial econometrics and the spatial behavior of economic agents at the microeconomic level. Incorporating useful examples and presenting real data and datasets on real firms, the book takes the reader through the key topics in a systematic way. The book outlines the specificities of data that represent a set of interacting individuals with respect to traditional econometrics that treat their locational choices as exogenous and their economic behavior as independent. In particular, the authors address the consequences of neglecting such important sources of information on statistical inference and how to improve the model predictive performances. The book presents the theory, clarifies the concepts and instructs the readers on how to perform their own analyses, describing in detail the codes which are necessary when using the statistical language R. The book is written by leading figures in the field and is completely up to date with the very latest research. It will be invaluable for graduate students and researchers in economic geography, regional science, spatial econometrics, spatial statistics and urban economics.
A unique and comprehensive source of information, this book is the only international publication providing economists, planners, policy makers and business people with worldwide statistics on current performance and trends in the manufacturing sector. The Yearbook is designed to facilitate international comparisons relating to manufacturing activity and industrial development and performance. It provides data which can be used to analyze patterns of growth and related long term trends, structural change and industrial performance in individual industries. Statistics on employment patterns, wages, consumption and gross output and other key indicators are also presented. Contents: Introduction Part I: Summary Tables 1.1. The Manufacturing Sector 1.2. The Manufacturing Branches Part II: Country Tables
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace - and vice versa - is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.
Over the last thirty years there has been extensive use of continuous time econometric methods in macroeconomic modelling. This monograph presents a continuous time macroeconometric model of the United Kingdom incorporating stochastic trends. Its development represents a major step forward in continuous time macroeconomic modelling. The book describes the model in detail and, like earlier models, it is designed in such a way as to permit a rigorous mathematical analysis of its steady-state and stability properties, thus providing a valuable check on the capacity of the model to generate plausible long-run behaviour. The model is estimated using newly developed exact Gaussian estimation methods for continuous time econometric models incorporating unobservable stochastic trends. The book also includes discussion of the application of the model to dynamic analysis and forecasting.
This book gives an introduction to R to build up graphing, simulating and computing skills to enable one to see theoretical and statistical models in economics in a unified way. The great advantage of R is that it is free, extremely flexible and extensible. The book addresses the specific needs of economists, and helps them move up the R learning curve. It covers some mathematical topics such as, graphing the Cobb-Douglas function, using R to study the Solow growth model, in addition to statistical topics, from drawing statistical graphs to doing linear and logistic regression. It uses data that can be downloaded from the internet, and which is also available in different R packages. With some treatment of basic econometrics, the book discusses quantitative economics broadly and simply, looking at models in the light of data. Students of economics or economists keen to learn how to use R would find this book very useful.
Mathematical Statistics for Economics and Business, Second Edition, provides a comprehensive introduction to the principles of mathematical statistics which underpin statistical analyses in the fields of economics, business, and econometrics. The selection of topics in this textbook is designed to provide students with a conceptual foundation that will facilitate a substantial understanding of statistical applications in these subjects. This new edition has been updated throughout and now also includes a downloadable Student Answer Manual containing detailed solutions to half of the over 300 end-of-chapter problems. After introducing the concepts of probability, random variables, and probability density functions, the author develops the key concepts of mathematical statistics, most notably: expectation, sampling, asymptotics, and the main families of distributions. The latter half of the book is then devoted to the theories of estimation and hypothesis testing with associated examples and problems that indicate their wide applicability in economics and business. Features of the new edition include: a reorganization of topic flow and presentation to facilitate reading and understanding; inclusion of additional topics of relevance to statistics and econometric applications; a more streamlined and simple-to-understand notation for multiple integration and multiple summation over general sets or vector arguments; updated examples; new end-of-chapter problems; a solution manual for students; a comprehensive answer manual for instructors; and a theorem and definition map. This book has evolved from numerous graduate courses in mathematical statistics and econometrics taught by the author, and will be ideal for students beginning graduate study as well as for advanced undergraduates.
Mechanism design is the field of economics that treats institutions and procedures as variables that can be selected in order to achieve desired objectives. An important aspect of a mechanism is the communication among its participants that it requires, which complements other design features such as incentives and complexity. A calculus-based theory of communication in mechanisms is developed in this book. The value of a calculus-based approach lies in its familiarity as well as the insight into mechanisms that it provides. Results are developed concerning (i) a first order approach to the construction of mechanisms, (ii) the range of mechanisms that can be used to achieve a given objective, as well as (iii) lower bounds on the required communication.
This 2004 volume offers a broad overview of developments in the theory and applications of state space modeling. With fourteen chapters from twenty-three contributors, it offers a unique synthesis of state space methods and unobserved component models that are important in a wide range of subjects, including economics, finance, environmental science, medicine and engineering. The book is divided into four sections: introductory papers, testing, Bayesian inference and the bootstrap, and applications. It will give those unfamiliar with state space models a flavour of the work being carried out as well as providing experts with valuable state of the art summaries of different topics. Offering a useful reference for all, this accessible volume makes a significant contribution to the literature of this discipline.
Price and quantity indices are important, much-used measuring instruments, and it is therefore necessary to have a good understanding of their properties. When it was published, this book is the first comprehensive text on index number theory since Irving Fisher's 1922 The Making of Index Numbers. The book covers intertemporal and interspatial comparisons; ratio- and difference-type measures; discrete and continuous time environments; and upper- and lower-level indices. Guided by economic insights, this book develops the instrumental or axiomatic approach. There is no role for behavioural assumptions. In addition to subject matter chapters, two entire chapters are devoted to the rich history of the subject.
Apply statistics in business to achieve performance improvement Statistical Thinking: Improving Business Performance, 3rd Edition helps managers understand the role of statistics in implementing business improvements. It guides professionals who are learning statistics in order to improve performance in business and industry. It also helps graduate and undergraduate students understand the strategic value of data and statistics in arriving at real business solutions. Instruction in the book is based on principles of effective learning, established by educational and behavioral research. The authors cover both practical examples and underlying theory, both the big picture and necessary details. Readers gain a conceptual understanding and the ability to perform actionable analyses. They are introduced to data skills to improve business processes, including collecting the appropriate data, identifying existing data limitations, and analyzing data graphically. The authors also provide an in-depth look at JMP software, including its purpose, capabilities, and techniques for use. Updates to this edition include: A new chapter on data, assessing data pedigree (quality), and acquisition tools Discussion of the relationship between statistical thinking and data science Explanation of the proper role and interpretation of p-values (understanding of the dangers of "p-hacking") Differentiation between practical and statistical significance Introduction of the emerging discipline of statistical engineering Explanation of the proper role of subject matter theory in order to identify causal relationships A holistic framework for variation that includes outliers, in addition to systematic and random variation Revised chapters based on significant teaching experience Content enhancements based on student input This book helps readers understand the role of statistics in business before they embark on learning statistical techniques.
The Analytic Hierarchy Process (AHP) has been one of the foremost mathematical methods for decision making with multiple criteria and has been widely studied in the operations research literature as well as applied to solve countless real-world problems. This book is meant to introduce and strengthen the readers' knowledge of the AHP, no matter how familiar they may be with the topic. This book provides a concise, yet self-contained, introduction to the AHP that uses a novel and more pedagogical approach. It begins with an introduction to the principles of the AHP, covering the critical points of the method, as well as some of its applications. Next, the book explores further aspects of the method, including the derivation of the priority vector, the estimation of inconsistency, and the use of AHP for group decisions. Each of these is introduced by relaxing initial assumptions. Furthermore, this booklet covers extensions of AHP, which are typically neglected in elementary expositions of the methods. Such extensions concern different numerical representations of preferences and the interval and fuzzy representations of preferences to account for uncertainty. During the whole exposition, an eye is kept on the most recent developments of the method.
Analyzing Event Statistics in Corporate Finance provides new alternative methodologies to increase accuracy when performing statistical tests for event studies within corporate finance. In contrast to conventional surveys or literature reviews, Jeng focuses on various methodological defects or deficiencies that lead to inaccurate empirical results, which ultimately produce bad corporate policies. This work discusses the issues of data collection and structure, the recursive smoothing for systematic components in excess returns, the choices of event windows, different time horizons for the events, and the consequences of applications of different methodologies. In providing improvement for event studies in corporate finance, and based on the fact that changes in parameters for financial time series are common knowledge, a new alternative methodology is developed to extend the conventional analysis to more robust arguments.
This Study Guide accompanies Statistics for Business and Financial Economics, 3rd Ed. (Springer, 2013), which is the most definitive Business Statistics book to use Finance, Economics, and Accounting data throughout the entire book. The Study Guide contains unique chapter reviews for each chapter in the textbook, formulas, examples and additional exercises to enhance topics and their application. Solutions are included so students can evaluate their own understanding of the material. With more real-life data sets than the other books on the market, this study guide and the textbook that it accompanies, give readers all the tools they need to learn material in class and on their own. It is immediately applicable to facing uncertainty and the science of good decision making in financial analysis, econometrics, auditing, production and operations, and marketing research. Data that is analyzed may be collected by companies in the course of their business or by governmental agencies. Students in business degree programs will find this material particularly useful to their other courses and future work.
Gini's mean difference (GMD) was first introduced by Corrado Gini in 1912 as an alternative measure of variability. GMD and the parameters which are derived from it (such as the Gini coefficient or the concentration ratio) have been in use in the area of income distribution for almost a century. In practice, the use of GMD as a measure of variability is justified whenever the investigator is not ready to impose, without questioning, the convenient world of normality. This makes the GMD of critical importance in the complex research of statisticians, economists, econometricians, and policy makers. This book focuses on imitating analyses that are based on variance by replacing variance with the GMD and its variants. In this way, the text showcases how almost everything that can be done with the variance as a measure of variability, can be replicated by using Gini. Beyond this, there are marked benefits to utilizing Gini as opposed to other methods. One of the advantages of using Gini methodology is that it provides a unified system that enables the user to learn about various aspects of the underlying distribution. It also provides a systematic method and a unified terminology. Using Gini methodology can reduce the risk of imposing assumptions that are not supported by the data on the model. With these benefits in mind the text uses the covariance-based approach, though applications to other approaches are mentioned as well.
Delving into the connections between renewable energy and economics on an international level, this book focuses specifically on hydropower and geothermal power production for use in the power intensive industry. It takes readily available government and international statistics to provide insight into how businesses and economists can interpret the factors that influence the growth of power intensive industries. It also discusses the CarbFix and SulFix projects that involve the injection of hydrogen sulphide (H2S), and carbon dioxide (CO2) back to reservoir as an emission reduction method. With improved engineering processes, both types of power generation are increasingly subject to economies of scale. These exciting technological developments have a great potential to change the way the world works, as the economy continues to rely so heavily on energy to drive production. Green energy is without a question going to be a major factor in our future, so studying it at its nascence is particularly exciting. This book is intended for academic researchers and students interested in current economic and environmental hot topics, as well as people interested in the inner workings of a possible new investment opportunity.
This book investigates the existence of stochastic and deterministic convergence of real output per worker and the sources of output (physical capital per worker, human capital per worker, total factor productivity -TFP- and average annual hours worked) in 21 OECD countries over the period 1970-2011. Towards this end, the authors apply a large battery of panel unit root and stationarity tests, all of which are robust to the presence of cross-sectional dependence. The evidence fails to provide clear-cut evidence of convergence dynamics either in real GDP per worker or in the series of the sources of output. Due to some limitations associated with second-generation panel unit root and stationarity tests, the authors further use the more flexible PANIC approach which provides evidence that real GDP per worker, real physical capital per worker, human capital and average annual hours exhibit some degree of deterministic convergence, whereas TFP series display a high degree of stochastic convergence.
Written for a broad audience this book offers a comprehensive account of early warning systems for hydro meteorological disasters such as floods and storms, and for geological disasters such as earthquakes. One major theme is the increasingly important role in early warning systems played by the rapidly evolving fields of space and information technology. The authors, all experts in their respective fields, offer a comprehensive and in-depth insight into the current and future perspectives for early warning systems. The text is aimed at decision-makers in the political arena, scientists, engineers and those responsible for public communication and dissemination of warnings. |
You may like...
Statistics for Business and Economics…
Paul Newbold, William Carlson, …
Paperback
R2,397
Discovery Miles 23 970
Operations And Supply Chain Management
David Collier, James Evans
Hardcover
Introductory Econometrics - A Modern…
Jeffrey Wooldridge
Hardcover
Operations and Supply Chain Management
James Evans, David Collier
Hardcover
Financial and Macroeconomic…
Francis X. Diebold, Kamil Yilmaz
Hardcover
R3,524
Discovery Miles 35 240
Statistics for Business and Economics…
Paul Newbold, William Carlson, …
R2,178
Discovery Miles 21 780
|