![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Business & Economics > Economics > Econometrics
This is a book on deterministic and stochastic Growth Theory and the computational methods needed to produce numerical solutions. Exogenous and endogenous growth models are thoroughly reviewed. Special attention is paid to the use of these models for fiscal and monetary policy analysis. Modern Business Cycle Theory, the New Keynesian Macroeconomics, the class of Dynamic Stochastic General Equilibrium models, can be all considered as special cases of models of economic growth, and they can be analyzed by the theoretical and numerical procedures provided in the textbook. Analytical discussions are presented in full detail. The book is self contained and it is designed so that the student advances in the theoretical and the computational issues in parallel. EXCEL and Matlab files are provided on an accompanying website (see Preface to the Second Edition) to illustrate theoretical results as well as to simulate the effects of economic policy interventions. The structure of these program files is described in "Numerical exercise"-type of sections, where the output of these programs is also interpreted. The second edition corrects a few typographical errors and improves some notation.
Increasing concerns regarding the world's natural resources and sustainability continue to be a major issue for global development. As a result several political initiatives and strategies for green or resource-efficient growth both on national and international levels have been proposed. A core element of these initiatives is the promotion of an increase of resource or material productivity. This dissertation examines material productivity developments in the OECD and BRICS countries between 1980 and 2008. By applying the concept of convergence stemming from economic growth theory to material productivity the analysis provides insights into both aspects: material productivity developments in general as well potentials for accelerated improvements in material productivity which consequently may allow a reduction of material use globally. The results of the convergence analysis underline the importance of policy-making with regard to technology and innovation policy enabling the production of resource-efficient products and services as well as technology transfer and diffusion.
The purpose of this book is to establish a connection between the traditional field of empirical economic research and the emerging area of empirical financial research and to build a bridge between theoretical developments in these areas and their application in practice. Accordingly, it covers broad topics in the theory and application of both empirical economic and financial research, including analysis of time series and the business cycle; different forecasting methods; new models for volatility, correlation and of high-frequency financial data and new approaches to panel regression, as well as a number of case studies. Most of the contributions reflect the state-of-art on the respective subject. The book offers a valuable reference work for researchers, university instructors, practitioners, government officials and graduate and post-graduate students, as well as an important resource for advanced seminars in empirical economic and financial research.
This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.
This book discusses the problem of model choice when the statistical models are separate, also called nonnested. Chapter 1 provides an introduction, motivating examples and a general overview of the problem. Chapter 2 presents the classical or frequentist approach to the problem as well as several alternative procedures and their properties. Chapter 3 explores the Bayesian approach, the limitations of the classical Bayes factors and the proposed alternative Bayes factors to overcome these limitations. It also discusses a significance Bayesian procedure. Lastly, Chapter 4 examines the pure likelihood approach. Various real-data examples and computer simulations are provided throughout the text.
This book assesses how efficient primary and upper primary education is across different states of India considering both output oriented and input oriented measures of technical efficiency. It identifies the most important factors that could produce differential efficiency among the states, including the effects of central grants, school-specific infrastructures, social indicators and policy variables, as well as state-specific factors like per-capita net-state-domestic-product from the service sector, inequality in distribution of income (Gini coefficient), the percentage of people living below the poverty line and the density of population. The study covers the period 2005-06 to 2010-11 and all the states and union territories of India, which are categorized into two separate groups, namely: (i) General Category States (GCS); and (ii) Special Category States (SCS) and Union Territories (UT). It uses non-parametric Data Envelopment Analysis (DEA) and obtains the Technology Closeness Ratio (TCR), measuring whether the maximum output producible from an input bundle by a school within a given group is as high as what could be produced if the school could choose to join the other group. The major departure of this book is its approach to estimating technical efficiency (TE), which does not use a single frontier encompassing all the states and UT, as is done in the available literature. Rather, this method assumes that GCS, SCS and UT are not homogeneous and operate under different fiscal and economic conditions.
This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.
NOW WITH NEW PROLOGUE ABOUT DEMYSTIFYING CORONAVIRUS NUMBERS, DONALD TRUMP AND WHY STATISTICS MATTER MORE THAN EVER 'The Number Bias combines vivid storytelling with authoritative analysis to deliver a warning about the way numbers can lead us astray - if we let them.' TIM HARFORD Even if you don't consider yourself a numbers person, you are a numbers person. The time has come to put numbers in their place. Not high up on a pedestal, or out on the curb, but right where they belong: beside words. It is not an overstatement to say that numbers dictate the way we live our lives. They tell us how we're doing at school, how much we weigh, who might win an election and whether the economy is booming. But numbers aren't as objective as they may seem; behind every number is a story. Yet politicians, businesses and the media often forget this - or use it for their own gain. Sanne Blauw travels the world to unpick our relationship with numbers and demystify our misguided allegiance, from Florence Nightingale using statistics to petition for better conditions during the Crimean War to the manipulation of numbers by the American tobacco industry and the ambiguous figures peddled during the EU referendum. Taking us from the everyday numbers that govern our health and wellbeing to the statistics used to wield enormous power and influence, The Number Bias counsels us to think more wisely. 'A beautifully accessible exploration of how numbers shape our lives, and the importance of accurately interpreting the statistics we are fed.' ANGELA SAINI, author of Superior
In the era of Big Data our society is given the unique opportunity to understand the inner dynamics and behavior of complex socio-economic systems. Advances in the availability of very large databases, in capabilities for massive data mining, as well as progress in complex systems theory, multi-agent simulation and computational social science open the possibility of modeling phenomena never before successfully achieved. This contributed volume from the Perm Winter School address the problems of the mechanisms and statistics of the socio-economics system evolution with a focus on financial markets powered by the high-frequency data analysis.
This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailed ness. These results motivate the development and applications of robust inference approaches under heavy tails, heterogeneity and dependence in observations. Several recently developed robust inference approaches are discussed and illustrated, together with applications.
In recent years nonlinearities have gained increasing importance in economic and econometric research, particularly after the financial crisis and the economic downturn after 2007. This book contains theoretical, computational and empirical papers that incorporate nonlinearities in econometric models and apply them to real economic problems. It intends to serve as an inspiration for researchers to take potential nonlinearities in account. Researchers should be aware of applying linear model-types spuriously to problems which include non-linear features. It is indispensable to use the correct model type in order to avoid biased recommendations for economic policy.
The research and its outcomes presented here focus on spatial sampling of agricultural resources. The authors introduce sampling designs and methods for producing accurate estimates of crop production for harvests across different regions and countries. With the help of real and simulated examples performed with the open-source software R, readers will learn about the different phases of spatial data collection. The agricultural data analyzed in this book help policymakers and market stakeholders to monitor the production of agricultural goods and its effects on environment and food safety.
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace - and vice versa - is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.
The Who, What, and Where of America is designed to provide a sampling of key demographic information. It covers the United States, every state, each metropolitan statistical area, and all the counties and cities with a population of 20,000 or more. Who: Age, Race and Ethnicity, and Household Structure What: Education, Employment, and Income Where: Migration, Housing, and Transportation Each part is preceded by highlights and ranking tables that show how areas diverge from the national norm. These research aids are invaluable for understanding data from the ACS and for highlighting what it tells us about who we are, what we do, and where we live. Each topic is divided into four tables revealing the results of the data collected from different types of geographic areas in the United States, generally with populations greater than 20,000. ·Table A. States ·Table B. Counties ·Table C. Metropolitan Areas ·Table D. Cities In this edition, you will find social and economic estimates on the ways American communities are changing with regard to the following: ·Age and race ·Health care coverage ·Marital history ·Education attainment ·Income and occupation ·Commute time to work ·Employment status ·Home values and monthly costs ·Veteran status ·Size of home or rental unit This title is the latest in the County and City Extra Series of publications from Bernan Press. Other titles include County and City Extra, County and City Extra: Special Decennial Census Edition, and Places, Towns, and Townships.
Mathematical Statistics for Economics and Business, Second Edition, provides a comprehensive introduction to the principles of mathematical statistics which underpin statistical analyses in the fields of economics, business, and econometrics. The selection of topics in this textbook is designed to provide students with a conceptual foundation that will facilitate a substantial understanding of statistical applications in these subjects. This new edition has been updated throughout and now also includes a downloadable Student Answer Manual containing detailed solutions to half of the over 300 end-of-chapter problems. After introducing the concepts of probability, random variables, and probability density functions, the author develops the key concepts of mathematical statistics, most notably: expectation, sampling, asymptotics, and the main families of distributions. The latter half of the book is then devoted to the theories of estimation and hypothesis testing with associated examples and problems that indicate their wide applicability in economics and business. Features of the new edition include: a reorganization of topic flow and presentation to facilitate reading and understanding; inclusion of additional topics of relevance to statistics and econometric applications; a more streamlined and simple-to-understand notation for multiple integration and multiple summation over general sets or vector arguments; updated examples; new end-of-chapter problems; a solution manual for students; a comprehensive answer manual for instructors; and a theorem and definition map. This book has evolved from numerous graduate courses in mathematical statistics and econometrics taught by the author, and will be ideal for students beginning graduate study as well as for advanced undergraduates.
A guide to economics, statistics and finance that explores the mathematical foundations underling econometric methods An Introduction to Econometric Theory offers a text to help in the mastery of the mathematics that underlie econometric methods and includes a detailed study of matrix algebra and distribution theory. Designed to be an accessible resource, the text explains in clear language why things are being done, and how previous material informs a current argument. The style is deliberately informal with numbered theorems and lemmas avoided. However, very few technical results are quoted without some form of explanation, demonstration or proof. The author -- a noted expert in the field -- covers a wealth of topics including: simple regression, basic matrix algebra, the general linear model, distribution theory, the normal distribution, properties of least squares, unbiasedness and efficiency, eigenvalues, statistical inference in regression, t and F tests, the partitioned regression, specification analysis, random regressor theory, introduction to asymptotics and maximum likelihood. Each of the chapters is supplied with a collection of exercises, some of which are straightforward and others more challenging. This important text: Presents a guide for teaching econometric methods to undergraduate and graduate students of economics, statistics or finance Offers proven classroom-tested material Contains sets of exercises that accompany each chapter Includes a companion website that hosts additional materials, solution manual and lecture slides Written for undergraduates and graduate students of economics, statistics or finance, An Introduction to Econometric Theory is an essential beginner's guide to the underpinnings of econometrics.
Originally published in 1939, this book forms the second part of a two-volume series on the mathematics required for the examinations of the Institute of Actuaries, focusing on finite differences, probability and elementary statistics. Miscellaneous examples are included at the end of the text. This book will be of value to anyone with an interest in actuarial science and mathematics.
Delving into the connections between renewable energy and economics on an international level, this book focuses specifically on hydropower and geothermal power production for use in the power intensive industry. It takes readily available government and international statistics to provide insight into how businesses and economists can interpret the factors that influence the growth of power intensive industries. It also discusses the CarbFix and SulFix projects that involve the injection of hydrogen sulphide (H2S), and carbon dioxide (CO2) back to reservoir as an emission reduction method. With improved engineering processes, both types of power generation are increasingly subject to economies of scale. These exciting technological developments have a great potential to change the way the world works, as the economy continues to rely so heavily on energy to drive production. Green energy is without a question going to be a major factor in our future, so studying it at its nascence is particularly exciting. This book is intended for academic researchers and students interested in current economic and environmental hot topics, as well as people interested in the inner workings of a possible new investment opportunity.
Written for a broad audience this book offers a comprehensive account of early warning systems for hydro meteorological disasters such as floods and storms, and for geological disasters such as earthquakes. One major theme is the increasingly important role in early warning systems played by the rapidly evolving fields of space and information technology. The authors, all experts in their respective fields, offer a comprehensive and in-depth insight into the current and future perspectives for early warning systems. The text is aimed at decision-makers in the political arena, scientists, engineers and those responsible for public communication and dissemination of warnings.
This volume addresses advanced DEA methodology and techniques developed for modeling unique new performance evaluation issues. Many numerical examples, real management cases and verbal descriptions make it very valuable for researchers and practitioners.
One of the best known statisticians of the 20th century, Frederick Mosteller has inspired numerous statisticians and other scientists by his creative approach to statistics and its applications. This volume collects 40 of his most original and influential papers, capturing the variety and depth of his writings. It is hoped that sharing these writings with a new generation of researchers will inspire them to build upon his insights and efforts.
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series, bridging the gap between methods and realistic applications. It presents the most important approaches to the analysis of time series, which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series, Granger causality tests and vector autogressive models are presented. As the modelling of nonstationary uni- or multivariate time series is most important for real applied work, unit root and cointegration analysis as well as vector error correction models are a central topic. Tools for analysing nonstationary data are then transferred to the panel framework. Modelling the (multivariate) volatility of financial time series with autogressive conditional heteroskedastic models is also treated.
The Analytic Hierarchy Process (AHP) has been one of the foremost mathematical methods for decision making with multiple criteria and has been widely studied in the operations research literature as well as applied to solve countless real-world problems. This book is meant to introduce and strengthen the readers' knowledge of the AHP, no matter how familiar they may be with the topic. This book provides a concise, yet self-contained, introduction to the AHP that uses a novel and more pedagogical approach. It begins with an introduction to the principles of the AHP, covering the critical points of the method, as well as some of its applications. Next, the book explores further aspects of the method, including the derivation of the priority vector, the estimation of inconsistency, and the use of AHP for group decisions. Each of these is introduced by relaxing initial assumptions. Furthermore, this booklet covers extensions of AHP, which are typically neglected in elementary expositions of the methods. Such extensions concern different numerical representations of preferences and the interval and fuzzy representations of preferences to account for uncertainty. During the whole exposition, an eye is kept on the most recent developments of the method.
In recent years, as part of the increasing "informationization" of industry and the economy, enterprises have been accumulating vast amounts of detailed data such as high-frequency transaction data in nancial markets and point-of-sale information onindividualitems in theretail sector. Similarly,vast amountsof data arenow ava- able on business networks based on inter rm transactions and shareholdings. In the past, these types of information were studied only by economists and management scholars. More recently, however, researchers from other elds, such as physics, mathematics, and information sciences, have become interested in this kind of data and, based on novel empirical approaches to searching for regularities and "laws" akin to those in the natural sciences, have produced intriguing results. This book is the proceedings of the international conference THICCAPFA7 that was titled "New Approaches to the Analysis of Large-Scale Business and E- nomic Data," held in Tokyo, March 1-5, 2009. The letters THIC denote the Tokyo Tech (Tokyo Institute of Technology)-Hitotsubashi Interdisciplinary Conference. The conference series, titled APFA (Applications of Physics in Financial Analysis), focuses on the analysis of large-scale economic data. It has traditionally brought physicists and economists together to exchange viewpoints and experience (APFA1 in Dublin 1999, APFA2 in Liege ` 2000, APFA3 in London 2001, APFA4 in Warsaw 2003, APFA5 in Torino 2006, and APFA6 in Lisbon 2007). The aim of the conf- ence is to establish fundamental analytical techniques and data collection methods, taking into account the results from a variety of academic disciplines.
The book examines applications in two disparate fields linked by the importance of valuing information: public health and space. Researchers in the health field have developed some of the most innovative methodologies for valuing information, used to help determine, for example, the value of diagnostics in informing patient treatment decisions. In the field of space, recent applications of value-of-information methods are critical for informing decisions on investment in satellites that collect data about air quality, fresh water supplies, climate and other natural and environmental resources affecting global health and quality of life. |
You may like...
Financial and Macroeconomic…
Francis X. Diebold, Kamil Yilmaz
Hardcover
R3,567
Discovery Miles 35 670
The Oxford Handbook of the Economics of…
Yann Bramoulle, Andrea Galeotti, …
Hardcover
R5,455
Discovery Miles 54 550
Applied Econometric Analysis - Emerging…
Brian W Sloboda, Yaya Sissoko
Hardcover
R5,351
Discovery Miles 53 510
Introductory Econometrics - A Modern…
Jeffrey Wooldridge
Hardcover
|