![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Hydraulic engineering > Flood control
On a global scale, sewage represents the main point-source of water pollution and is also the predominant source of nitrogen contamination in urban regions. The present research is focused on the study of the main challenges that need to be addressed in order to achieve a successful inorganic nitrogen post-treatment of anaerobic effluents in the mainstream. The post-treatment is based on autotrophic nitrogen removal. The challenges are classified in terms of operational features and system configuration, namely: (i) the short-term effects of organic carbon source, the COD/N ratio and the temperature on the autotrophic nitrogen removal; the results from this study confirms that the Anammox activity is strongly influenced by temperature, in spite of the COD source and COD/N ratios applied. (ii) The long-term performance of the Anammox process under low nitrogen sludge loading rate (NSLR) and moderate to low temperatures; it demonstrates that NSLR affects nitrogen removal efficiency, granular size and biomass concentration of the bioreactor. (iii) The Anammox cultivation in a closed sponge-bed trickling filter (CSTF) and (iv) the autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter (STF). Both types of Anammox sponge-bed trickling filters offer a plane technology with good nitrogen removal efficiency.
In recent years, the continued technological advances have led to the spread of low-cost sensors and devices supporting crowdsourcing as a way to obtain observations of hydrological variables in a more distributed way than the classic static physical sensors. The main advantage of using these type of sensors is that they can be used not only by technicians but also by regular citizens. However, due to their relatively low reliability and varying accuracy in time and space, crowdsourced observations have not been widely integrated in hydrological and/or hydraulic models for flood forecasting applications. Instead, they have generally been used to validate model results against observations, in post-event analyses. This research aims to investigate the benefits of assimilating the crowdsourced observations, coming from a distributed network of heterogeneous physical and social (static and dynamic) sensors, within hydrological and hydraulic models, in order to improve flood forecasting. The results of this study demonstrate that crowdsourced observations can significantly improve flood prediction if properly integrated in hydrological and hydraulic models. This study provides technological support to citizen observatories of water, in which citizens not only can play an active role in information capturing, evaluation and communication, leading to improved model forecasts and better flood management.
Stakeholders' lack of awareness, involvement and participation in the planning and management of water resources and flood risk often creates problems in the acceptance and implementation of proposed measures. Interactions among stakeholders and decision makers build awareness, trust, enhance cooperation and negotiation for best possible measures. The main challenge in stakeholder participation is maintaining the participatory process. Stakeholders' spatial distribution, limitation of financial resources and diverse stakeholders' interest (even opposed) are some of the hindrances in maintaining the participatory process. Addressing these challenges and hindrances, this research developed and implemented three frameworks for developing "Networked Environments for Stakeholder Participation" (NESPs). Networked environments are web-based computer-aided or mobile environments for remote virtual interaction between participating entities such as stakeholders. NESPs are envisioned to enable stakeholder participation by providing sharing of information, planning, negotiating and decision support. NESPs were implemented in five real case studies (1) Lakes of Noord-Brabant, The Netherlands, (2) Danube river (Braila-Isaccea section), Romania, (3) Somes Mare catchment, Romania, (4) Cranbrook catchment, London and (5) Alster catchment, Hamburg, Germany. The overall results of the research show that networked environments can address the challenges and hindrances in stakeholder participation and enhance participation in water resources and flood management.
Primarily written as course material on flood control and drainage engineering for advanced students of civil engineering, this new fourth edition is again thoroughly revised. It accommodates recent developments in remote sensing, information technology and GIS technology. New added material deals with flood management due to Tsunami waves, flooding due to dam failure and breaking of embankments, application of dredging technologies, problems of flood forecasting, flood plain prioritization and flood hazard zoning, and engineering measures for flood control. Drainage improvement is tackled, with particular regard to salinity and coastal aquifer management from the ingress of sea water. The book includes design problem-solving and case studies, making it practical and applications-oriented. The subject matter will be of considerable interest to civil engineers, agricultural engineers, architects and town planners, as well as other government and non-government organizations.
Floods are one of the most common and widely distributed natural risks to life and property worldwide. There is a need to identify the risk of flooding in flood prone areas to support decisions for flood management from high level planning proposals to detailed design. An important part of modern flood risk management is to assess vulnerability to floods. This assessment can be done only by using a parametric approach. Worldwide there is a need to enhance our understanding of vulnerability and to also develop methodologies and tools to assess vulnerability. One of the most important goals of assessing flood vulnerability is to create a readily understandable link between the theoretical concepts of flood vulnerability and the day-to-day decision-making process and to encapsulate this link in an easily accessible tool. The present book portrays a holistic parametric approach to be used in flood vulnerability assessment and this way to facilitate the consideration of system impacts in water resources decision-making. The approach was verified in practical applications on different spatial scales and comparison with deterministic approaches. The use of flood vulnerability approach can produce helpful understanding into vulnerability and capacities for using it in planning and implementing projects.
Nowadays, the uncertainties associated with the process of making decisions for water infrastructure investments can be significant and arise from, amongst other factors, a lack of knowledge about primary external drivers, like climate change. New and improved methods for the assessment climate impacts and adaptation are needed to address these uncertainties; otherwise, investment strategies can be maladaptive, resulting in either increased risks or unnecessary costs of potentially irreversible measures. In response to this need, there has been a significant expansion of the approaches and methods in use. This book provides practical experience with two different assessment methods: Real-In-Options and Adaptation Tipping Points. These were selected because they both provide insight into and promote the ability of the system to deal with future change and thus can be used within a resilience approach. The resilience approach takes a dynamic perspective on adaptive processes and the effects of these processes at/across different spatio-temporal scales. Although the methods share a similar aim, they have considerable differences in orientation and application. This book discusses the concept, procedures, case examples and benefits/limitations of each method, examining its usefulness for informing investment decisions. It gives specific recommendations on which method to use under what circumstances.
Breakwaters and closure dams belong to the most spectacular
hydraulic structures. They are exposed to the most severe loading
by waves and currents, either during their construction, or during
their life cycle.
This book tackles the question of how we can manage flood-related disaster risks, such as from typhoons, monsoons, and torrential rain, which have been intensified by climate change and have generated unprecedented floods, landslides and debris flows worldwide. It presents recent conceptual developments in disasters, risk and resilience, and surveys UN policies on environment and development as well as disaster management. Sustainable and resilient development requires an integrated approach and human empowerment. Japan provides a useful example of effective flood management and disaster recovery in its current strategies for river and basin integrated flood management. Very few English-language books present up-to-date Japanese experiences for students and professionals in the context of global trends, relevant to a time of climate change and with global application. * Outlines an integrated approach to flood risk management in the context of UN initiatives * Details Japanese good practice developed through culture and the needs of a changing society Integrated Flood Risk Management is ideal for professionals working for environmental agencies, hydrologists and engineers, as well as students of disaster management and water resources development.
Flood risk management requires a multi-disciplinary approach with experts from the fields of health, town planning, civil engineering, computer science and mathematical statistics. This volume presents chapters highlighting the methodologies and tools developed to improve flood management and flood risk reduction. Chapters in this important volume consider research on Emerging economies and developing countries and the case studies are focused in Malaysia, China and South-East Asia. The book presents key research from areas of the globe where flood management has not traditionally been studied but where the effects of climate change and natural disasters present huge challenges for societies in the region. This volume, edited by leaders in the field of disaster management, would of be particular interest to students, researchers and policy specialists involved with examining flood related risk reduction methods and systems for key decision makers.
This illustrated notebook highlights the need for a change of paradigm in current flood management practices, one that acknowledges the wide-ranging and interdisciplinary benefits brought by public space design. Reassessing and improving established flood management methods, public spaces are faced with a new and enhanced role as mediators of flood adaptation able to integrate infrastructure and communities together in the management of flood water as an ultimate resource for urban resilience. The book specifically introduces a path towards a new perspective on flood adaptation through public space design, stressing the importance of local, bottom up, approaches. Deriving from a solution-directed investigation, which is particularly attentive to design, the book offers a wide range of systematized conceptual solutions of flood adaptation measures applicable in the design of public spaces. Through a commonly used vocabulary and simple technical notions, the book facilitates and accelerates the initial brainstorm phases of a public space project with flood adaptation capacities, enabling a direct application in contemporary practice. Furthermore, it offers a significant sample of real-case examples that may further assist the decision-making throughout design processes. Overall, the book envisions to challenge established professionals, such as engineers, architects or urban planners, to work and design with uncertainty in an era of an unprecedented climate.
Our changing climate and more extreme weather events have dramatically increased the number and severity of floods across the world. Demonstrating the diversity of global flood risk management (FRM), this volume covers a range of topics including planning and policy, risk governance and communication, forecasting and warning, and economics. Through short case studies, the range of international examples from North America, Europe, Asia and Africa provide analysis of FRM efforts, processes and issues from human, governance and policy implementation perspectives. Written by an international set of authors, this collection of chapters and case studies will allow the reader to see how floods and flood risk management is experienced in different regions of the world. The way in which institutions manage flood risk is discussed, introducing the notions of realities and social constructions when it comes to risk management. The book will be of great interest to students and professionals of flood, coastal, river and natural hazard management, as well as risk analysis and insurance, demonstrating multiple academic frameworks of analysis and their utility and drawbacks when applied to real-life FRM contexts.
During the past years, Saudi Arabia has been affected by particularly severe torrential rains and floods. This book presents an in-depth and all-encompassing study on the floods that occurred in the Jeddah area in 2009 and 2011, including water-flow mechanisms, state-of-the-art techniques for flood assessment, flood control and appropriate management approaches. It highlights a number of methods and concepts that can be applied in similar areas in Saudi Arabia in order to reduce and mitigate the impact of torrential rains and floods.
This book presents climate adaptation and flood risk problems and solutions in coastal cities, including an independent investigation of adaptation paths and problems in Rotterdam, New York and Jakarta. The comparison draws out lessons that each city can learn from the others. While the main focus is on coastal flooding, cities are also affected by climate change in other ways, including impacts that occur away from the coast. The New York City Water Supply System, for example, stretches as far as 120 miles upstate, and the New York City Department of Environmental Protection has undertaken extensive climate assessment not only for its coastal facilities, but also for its upstate facilities, which will be affected by rising temperatures, droughts, inland flooding and water quality changes. The authors examine key questions, such as: Are current city plans climate proof or do we need to finetune our ongoing investments? Can we develop a flood proof subway system? Can we develop new infrastructure in such a way that it serves flood protection, housing and natural values?
Flood damages are increasing as a result of frequent occurrence of large floods in many parts of the world, existing and continuing encroachment of development onto flood plains and aging flood protection structures. Under such circumstances, there is an ongoing search for better ways of protecting human life, land, property and the environment by improved flood management. Many flood management measures have been practiced in various jurisdictions, including living with floods, non-structural measures (e.g. regulations, flood defence by flood forecasting and warning, evacuations, and flood insurance), and structural measures (e.g., land drainage modifications, reservoirs, dykes and polders). Such flood management is difficult in river basins controlled by a single authority, and becomes even more challenging when dealing with transboundary floods, which may originate in one country or jurisdiction and then propagate downstream to another country, or jurisdiction.
Floods are of increasing public concern world-wide due to increasing damages and unacceptably high numbers of injuries. Previous approaches of flood protection led to limited success especially during recent extreme events. Therefore, an integrated flood risk management is required which takes into consideration both the hydrometeorogical and the societal processes. Moreover, real effects of risk mitigation measures have to be critically assessed. The book draws a comprehensive picture of all these aspects and their interrelations. It furthermore provides a lot of detail on earth observation, flood hazard modelling, climate change, flood forecasting, modelling vulnerability, mitigation measures and the various dimensions of management strategies. In addition to local and regional results of science, engineering and social science investigations on modelling and management, transboundary co-operation of large river catchments are of interest. Based on this, the book is a valuable source of the state of the art in flood risk management but also covers future demands for research and practice in terms of flood issues.
The very word "barrages" is evocative. In the context of tidal waters it conjures up pictures of massive structures and environmental change. Barrages represent the engineer?s success where King Canute failed ? to stop the tide coming in. They are hardly a new concept as man has for centuries tried to harness tidal power to drive his machinery, but a new breed of barrage is emerging, aimed at regenerating depressed urban areas. One of the primary aims of such schemes has been to drown "unsightly" mud flats. If you happen to be a wading bird used to enjoying the worms that live in intertidal mud flats you may not share that perspective. Indeed, many people today tend to side with the birds, fish and other ecological wonders and often find themselves in conflict with the promoters of a barrage scheme. How far are their fears justified? Are the negative impacts as bad as some people have predicted or even worse? How accurately can the impacts be predicted by scientific methods? Can the barrage be designed and its operation controlled to mitigate any negative effects as well as to optimise its primary objective? These issues are addressed in this book by authors drawing on their experience of research and practical experience.
This book discusses the functions of revetments and the different aspects of structural performance. It includes example specifications and calculations that enable the engineer to choose the most stable, appropriate and cost-effective revetment system for a given situation. The book guides the engineer through the design process, from identifying hydraulic loading conditions and initial dimensioning of the revetment elements to detailed design of the revetment elements to ensure adequate protection against design wave conditions.
This comprehensive manual provides extensive information on the types of revetment available and provides guidance on the choice and design of these systems. With regard to natural and artificial watercourses information is included on revetments that incorporate some form of structural protection and revetments which combine this protection with vegetation to increase the environmental quality of the systems. Extensive use of photographs, flowcharts and diagrams allow the engineer to choose the most appropriate type of revetment and the most cost-effective design.
This book assesses and illustrates innovative and practical world-wide measures for combating sea level rise from the profession of landscape architecture. The work explores how the appropriate mixture of integrated, multi-scalar flood protection mechanisms can reduce risks associated with flood events including sea level rise. Because sea level rise is a global issue, illustrative case studies performed from the United States, Korea, Australia, New Zealand, Thailand, Japan, China, and the Netherlands identify the structural (engineered), non-structural (nature-based), and hybrid mechanisms (mixed) used to combat sea level rise and increase flood resilience. The alternative flood risk reduction mechanisms are extracted and analyzed from each case study to develop and explain a set of design-based typologies to combat sea level rise which can then be applied to help proctor new and existing communities. It is important for those located within the current or future floodplain considering sea level rise and those responsible for land use, developmental, and population-related activities within these areas to strategically implement a series of integrated constructed and green infrastructure-based flood risk reduction mechanisms to adequately protect threatened areas. As a result, this book is beneficial to both academics and practitioners related to multiple design professions such as urban designers, urban planners, architects, real estate developers, and landscape architects.
Read a free excerpt here! American engineers have done astounding things to bend the Mississippi River to their will: forcing one of its tributaries to flow uphill, transforming over a thousand miles of roiling currents into a placid staircase of water, and wresting the lower half of the river apart from its floodplain. American law has aided and abetted these feats. But despite our best efforts, so-called "natural disasters" continue to strike the Mississippi basin, as raging floodwaters decimate waterfront communities and abandoned towns literally crumble into the Gulf of Mexico. In some places, only the tombstones remain, leaning at odd angles as the underlying soil erodes away. Mississippi River Tragedies reveals that it is seductively deceptive-but horribly misleading-to call such catastrophes "natural." Authors Christine A. Klein and Sandra B. Zellmer present a sympathetic account of the human dreams, pride, and foibles that got us to this point, weaving together engaging historical narratives and accessible law stories drawn from actual courtroom dramas. The authors deftly uncover the larger story of how the law reflects and even amplifies our ambivalent attitude toward nature-simultaneously revering wild rivers and places for what they are, while working feverishly to change them into something else. Despite their sobering revelations, the authors' final message is one of hope. Although the acknowledgement of human responsibility for unnatural disasters can lead to blame, guilt, and liability, it can also prod us to confront the consequences of our actions, leading to a liberating sense of possibility and to the knowledge necessary to avoid future disasters.
Along with windstorms, floods are the most common and widespread of all natural disasters. Although they can often be predicted, they cause loss of life, damage and destruction, as many urban communities are located near coasts and rivers. In terms of victims, floods are responsible for more than half the deaths caused by natural catastrophes. As flood events appear to be rapidly increasing world-wide, an advanced and universal approach to urban flooding and how to manage will help reduce flood impact. This textbook integrates expertise from disciplines such as hydrology, sociology, architecture, urban design, construction and water resources engineering. The subject is approached from an international perspective and case studies, exercises, expert advice and literature recommendations are included to support the theory and illustrations. Developed by a team of specialists, this volume is intended for urban flood management education of hydrology, geography, civil and environmental engineering, and management students at university level. Moreover, professionals will find this book useful as a reference. More information on flood resilience and urban flood management can be found at www.floodresiliencegroup.org For a preview, please go to http: //issuu.com/crcpress/docs/urban_flood_management
The unprecedented growth of cities has a significant impact on future flood risk that might exceed the impacts of climate change in many metropolitan areas across the world. Although the effects of urbanisation on flood risk are well understood, assessments that include spatially explicit future growth projections are limited. This comparative study provides insight in the long term development of future riverine and pluvial flood risk for 18 fast growing megacities. The outcomes provide not only a baseline absent in current practise, but also a strategic outlook that might better establish the role of urban planning in limiting future flood risk.
In Draining New Orleans, the first full-length book devoted to "the world's toughest drainage problem," renowned geographer Richard Campanella recounts the epic challenges and ingenious efforts to dewater the Crescent City. With forays into geography, public health, engineering, architecture, politics, sociology, race relations, and disaster response, he chronicles the herculean attempts to "reclaim" the city's swamps and marshes and install subsurface drainage for massive urban expansion. The study begins with a vivid description of a festive event on Mardi Gras weekend 1915, which attracted an entourage of elite New Orleanians to the edge of Bayou Barataria to witness the christening of giant water pumps. President Woodrow Wilson, connected via phoneline from the White House, planned to activate the station with the push of a button, effectively draining the West Bank of New Orleans. What transpired in the years and decades that followed can only be understood by examining the large swath of history dating back two centuries earlier-to the geological formation and indigenous occupation of this delta-and extending through the colonial, antebellum, postbellum, and Progressive eras to modern times. The consequences of dewatering New Orleans proved both triumphant and tragic. The city's engineering prowess transformed it into a world leader in drainage technology, yet the municipality also fell victim to its own success. Rather than a story about mud and machinery, this is a history of people, power, and the making of place. Campanella emphasizes the role of determined and sometimes unsavory individuals who spearheaded projects to separate water from dirt, creating lucrative opportunities in the process not only for the community but also for themselves. |
You may like...
Architectural Design - Conception and…
Chris A. Vissers, Luis Ferreira Pires, …
Hardcover
Complex Networks VI - Proceedings of the…
Giuseppe Mangioni, Filippo Simini, …
Hardcover
Managed Grids and Cloud Systems in the…
Simon C. Lin, Eric Yen
Hardcover
R5,340
Discovery Miles 53 400
Negation and Polarity: Experimental…
Pierre Larrivee, Chung Min Lee
Hardcover
Embedded and Real Time System…
Mohammad Ayoub Khan, Saqib Saeed, …
Hardcover
R3,445
Discovery Miles 34 450
|