![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter
The first three billion years of cosmic time were the prime epoch of galaxy formation. Characterising galaxies at this epoch is therefore crucial to achieving a major goal of modern astrophysics: to understand how galaxies such as our Milky Way emerged from the primordial density fluctuations in the early Universe and how they evolved through cosmic time. Recent major international investments in observing facilities such as the Atacama Large Millimetre Array (ALMA) and the James Webb Space Telescope (JWST) promise to provide the next leap in our understanding of this topic. This volume gathers the scientific contributions to the International Astronomical Union Symposium 352, which was devoted to this topic. The community of theoretical and observational experts discuss how we can make the most of ALMA and JWST synergies in advancing our understanding of galaxy evolution in the young Universe.
Neutron stars, the most extreme state of matter yet confirmed, are
responsible for much of the high-energy radiation detected in the
universe. Meszaros provides a general overview of the physics of
magnetized neutron stars, discusses in detail the radiation
processes and transport properties relevant to the production and
propagation of high-energy radiation in the outer layers of these
objects, and reviews the observational properties and theoretical
models of various types of neutron star sources.
This self-contained astrophysics textbook for advanced undergraduates explores how stars form, what happens to them as they age, and what becomes of them when they die. Students can investigate the physical processes sustaining the energy output of stars during each stage of their evolution and which drive the progression from one stage to the next, and examine the relationship between different stages of stellar evolution and the production of the chemical elements. The textbook contains a wealth of worked examples and exercises with full solutions. Summaries, key facts and equations are clearly identified, and there are full colour illustrations throughout. Drawing on decades of experience in supported learning and independent study, this textbook is an ideal bridging text for astrophysics and physics majors looking to move on from the introductory texts. Accompanying resources to this textbook are available at: http: //www.cambridge.org/features/astrophysics
This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.
Thoroughly revised, expanded and updated throughout, this new edition of Astrophysics of GaseousNebulae and Active Galactic Nuclei is a graduate-level text and reference book on gaseous nebulae, nova and supernova remnants, and the emission-line regions in Seyfert galaxies, radio galaxies, quasars, and other types of active galactic nuclei. Much of the new data and many of the new images are from the Hubble Space Telescope and some of the largest ground-based telescopes in the world. Two wholly new chapters have been added, one on infrared astronomy and the other on X-ray astronomy, reflecting the great advances in these fields. This new edition also contains two completely new appendices, one a long primer on the quantum-mechanical concepts used in the analysis of nebular emission-line spectra, and the other a briefer description of molecular spectra. Large amounts of new data on dust in nebulae and quasars, and the photo-dissociated regions containing neutral atoms, molecules, and dust within and around them, have also been added to the book. Thus, the previous edition of this classic text, which has been tried, tested, and widely used for thirty years, has now been succeeded by a new, revised, updated, larger edition, which will be valuable to anyone seriously interested in astrophysics.
Not so if the book has been translated into Arabic. Now the reader can discern no meaning in the letters. The text conveys almost no information to the reader, yet the linguistic informa tion contained by the book is virtually the same as in the English original. The reader, familiar with books will still recognise two things, however: First, that the book is a book. Second, that the squiggles on the page represent a pattern of abstractions which probably makes sense to someone who understands the mean ing of those squiggles. Therefore, the book as such, will still have some meaning for the English reader, even if the content of the text has none. Let us go to a more extreme case. Not a book, but a stone, or a rock with engravings in an ancient language no longer under stood by anyone alive. Does such a stone not contain human information even if it is not decipherable? Suppose at some point in the future, basic knowledge about linguistics and clever computer aids allow us to decipher it? Or suppose someone discovers the equivalent of a Rosetta stone which allows us to translate it into a known language, and then into English? Can one really say that the stone contained no information prior to translation? It is possible to argue that the stone, prior to deciphering contained only latent information."
Compiled by a team of experts, this textbook introduces the properties and evolution of the most immediately visible objects in the Universe - stars. Designed for elementary university courses in astronomy and astrophysics, it starts with a detailed discussion of our nearest star, the Sun, and describes how solar physicists have come to understand its internal workings. It then considers how we study the basic physical properties and life-cycles of more distant stars, culminating with a discussion of more 'exotic' objects, such as neutron stars and black holes. This second edition has a greater emphasis on the physical and spectral properties of stars, introducing stellar atmospheres, spectral line formation and the role of binary stars in the formation of compact objects. Avoiding complex mathematics, and generously illustrated in colour throughout, this accessible text is ideal for self-study and will appeal to both amateur astronomers and undergraduate students.
Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.
This extensively illustrated book presents the astrophysics of galaxies since their beginnings in the early Universe. It has been thoroughly revised to take into account the most recent observational data, and recent discoveries such as dark energy. There are new sections on galaxy clusters, gamma ray bursts and supermassive black holes. The authors explore the basic properties of stars and the Milky Way before working out towards nearby galaxies and the distant Universe. They discuss the structures of galaxies and how galaxies have developed, and relate this to the evolution of the Universe. The book also examines ways of observing galaxies across the whole electromagnetic spectrum, and explores dark matter and its gravitational pull on matter and light. This book is self-contained and includes several homework problems with hints. It is ideal for advanced undergraduate students in astronomy and astrophysics.
The search for life in the universe, once the stuff of science fiction, is now a robust worldwide research program with a well-defined roadmap probing both scientific and societal issues. This volume examines the humanistic aspects of astrobiology, systematically discussing the approaches, critical issues, and implications of discovering life beyond Earth. What do the concepts of life and intelligence, culture and civilization, technology and communication mean in a cosmic context? What are the theological and philosophical implications if we find life - and if we do not? Steven J. Dick argues that given recent scientific findings, the discovery of life in some form beyond Earth is likely and so we need to study the possible impacts of such a discovery and formulate policies to deal with them. The remarkable and often surprising results are presented here in a form accessible to disciplines across the sciences, social sciences, and humanities.
"If you buy just one guide...you won't do better than this" - BBC Sky at Night Magazine "I will continue to enjoy 'Philip's Stargazing' as the months go by" - Helen Sharman, Astronaut "Very useful indeed" - Chris Lintott, Sky at Night presenter Discover the latest in stargazing with the new and definitive guide to the night sky. Whether you're a seasoned astronomer or just starting out, Philip's Stargazing 2022 is the only book you'll need. Compiled by experts and specially designed for use in Britain and Ireland, Stargazing 2022 acts as a handily illustrated and comprehensive companion. - 12 Brand-New Maps for year-round astronomical discovery - Month-to-Month information. Daily Moon Phase Calendar, highlighting special lunar events throughout the year - Planet Watch for ideal viewing days in 2022 - Avoid light pollution with our detailed Dark Sky Map - Expert advice and insight throughout from internationally renowned Professor Nigel Henbest - A 'Behind the Scenes' look at astrophotography from expert Robin Scagell - Complete calendar of major astronomical events, including the Top 20 Sky Sights of 2022 - Jargon Buster, explaining common or confusing terms - The planets' movements explained from solar and lunar eclipses to meteor showers and comets
Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.
The New General Catalogue (NCG), originally created in 1888, is the source for referencing bright nebulae and star clusters, both in professional and amateur astronomy. With 7840 entries, it is the most-used historical catalogue of observational astronomy, and NGC numbers are commonly used today. However, the fascinating history of the discovery, observation, description and cataloguing of nebulae and star clusters in the nineteenth century has largely gone untold, until now. This well-researched book is the first comprehensive historical study of the NGC, and is an important resource to all those with an interest in the history of modern astronomy and visual deep-sky observing. It covers the people, observatories, instruments and methods involved in nineteenth-century visual deep-sky observing, as well as prominent deep-sky objects. The book also compares the NGC to modern object data, demonstrating how important the NGC is in observational astronomy today.
Casual stargazers are familiar with many classical figures and asterisms composed of bright stars (e.g., Orion and the Plough), but this book reveals not just the constellations of today but those of yesteryear. The history of the human identification of constellations among the stars is explored through the stories of some influential celestial cartographers whose works determined whether new inventions survived. The history of how the modern set of 88 constellations was defined by the professional astronomy community is recounted, explaining how the constellations described in the book became permanently "extinct." Dr. Barentine addresses why some figures were tried and discarded, and also directs observers to how those figures can still be picked out on a clear night if one knows where to look. These lost constellations are described in great detail using historical references, enabling observers to rediscover them on their own surveys of the sky. Treatment of the obsolete constellations as extant features of the night sky adds a new dimension to stargazing that merges history with the accessibility and immediacy of the night sky.
Originally published in 1957, this book contains twenty-three contributions from a symposium held during the Ninth General Assembly of the International Astronomical Union in Dublin. The papers contained range from present knowledge in stellar instability to the presentation of new research results and focus on the instability among the hot stars of both low and high luminosity and the cool stars and their close binary systems. Papers range from 'Physical processes in novae' to 'Variable stars and problems of stellar formation' to 'Photometric evidence of instability in eclipsing systems'. Accounts of discussion, which followed the presentations, are also included for reference as well as photographs and diagrams. Offering a re-assessment of non-stable stars and recognising, relocating and redefining the issues surrounding stellar instability, this book will be a valuable reference work to anyone interested in the history of physics, astronomy and cosmology.
First published in 1958, and composed primarily of presentations delivered at the Ninth General Assembly of the International Astronomical Union in 1955, this book contains sixteen papers on the subject of the Galactic System in the light of then-recent developments in radio astronomy. The contributors compare new knowledge of our Galactic System with what can be gleaned from other galaxies and star systems, such as the Andromeda nebula. This book will be of value to anyone with an interest in astronomy and in the development of astronomical knowledge.
Guiding the reader through all the stages that lead to the formation of a star such as our Sun, this advanced textbook provides students with a complete overview of star formation. It examines the underlying physical processes that govern the evolution from a molecular cloud core to a main-sequence star, and focuses on the formation of solar-mass stars. Each chapter combines theory and observation, helping readers to connect with and understand the theory behind star formation. Beginning with an explanation of the interstellar medium and molecular clouds as sites of star formation, subsequent chapters address the building of typical stars and the formation of high-mass stars, concluding with a discussion of the by-products and consequences of star formation. This is a unique, self-contained text with sufficient background information for self-study, and is ideal for students and professional researchers alike.
Summarising the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods. Focusing on optical and near-infrared wavelengths, each detailed, up-to-date chapter addresses a different facet of recent innovations, including new instrumentation, techniques and theories; new methods based on laboratory studies, enabling the modelling of polarimetric characteristics for a wide variety of astronomical objects; emerging fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets, and the search for extraterrestrial life; and unique results produced by space telescopes, and polarimeters aboard exploratory spacecraft. With contributions from an international team of accomplished researchers, this is an ideal resource for astronomers and researchers working in astrophysics, earth sciences, and remote sensing keen to learn more about this valuable diagnostic tool. The book is dedicated to the memory of renowned polarimetrist Tom Gehrels.
Astronomers' Universe Series is a new series aimed at active amateur astronomers but is appropriate to a wider audience of astronomically-informed readers. The book provides an up-to-date account of active galaxies. Lists of such objects and their visual and imaged appearance in commercially available telescopes are an important component of this book. The book makes sense of the chaotic and apparently innumerable types of violently active galaxies. It provides the data and teaches the skills needed for users of small telescopes to observe and image some of these "galaxies in turmoil" for themselves.
Gerald North's complete practical guide and resource package instructs amateur astronomers in observing and monitoring variable stars and other objects of variable brightness. Descriptions of the objects are accompanied by explanations of the background astrophysics, providing readers with real insight into what they are observing at the telescope. The main instrumental requirements for observing and estimating the brightness of objects by visual means and by CCD photometry are detailed, and there is advice on the selection of equipment. The book contains a CD-ROM packed with resources, including hundreds of light-curves and over 600 printable finder charts. Containing extensive practical advice, this comprehensive guide is an invaluable resource for amateur astronomers of all levels, from novices to more advanced observers. Gerald North is a lifelong amateur astronomer. In addition to being a member of the British Astronomical Association since 1977, he is also the author of many books, including Advanced Amateur Astronomy (Cambridge, 1997) and Observing the Moon (Cambridge, 2000).
From supernovae and gamma-ray bursts to the accelerating Universe, this is an exploration of the intellectual threads that lead to some of the most exciting ideas in modern astrophysics and cosmology. This fully updated second edition incorporates new material on binary stars, black holes, gamma-ray bursts, worm-holes, quantum gravity and string theory. It covers the origins of stars and their evolution, the mechanisms responsible for supernovae, and their progeny, neutron stars and black holes. It examines the theoretical ideas behind black holes and their manifestation in observational astronomy and presents neutron stars in all their variety known today. This book also covers the physics of the twentieth century, discussing quantum theory and Einstein's gravity, how these two theories collide, and the prospects for their reconciliation in the twenty-first century. This will be essential reading for undergraduate students in astronomy and astrophysics, and an excellent, accessible introduction for a wider audience.
The Cambridge Double Star Atlas is back! It is the first and only atlas of physical double stars that can be viewed with amateur astronomical instruments. Completely rewritten, this new edition explains the latest research into double stars, and looks at the equipment, techniques and opportunities that will enable you to discover, observe and measure them. The target list has been completely revised and extended to 2500 binary or multiple systems. Each system is described with the most recent and accurate data from the authoritative Washington Double Star Catalog, including the HD and SAO numbers that are most useful in our digital age. Hundreds of remarks explain the attributes of local, rapidly changing, often measured or known orbital systems. The color atlas charts by Wil Tirion have been updated to help you easily find and identify the target systems, as well as other deep-sky objects. This is an essential reference for double star observers.
First published in 1986, this is the story of the analysis of starlight by astronomical spectroscopy. Beginning with Joseph Fraunhofer's discovery of spectral lines in the early nineteenth century, this new edition continues the story through to the year 2000. In addition to the key discoveries, it presents the cultural and social history of stellar astrophysics by introducing the leading astronomers and their struggles, triumphs and disagreements. Basic concepts in spectroscopy and spectral analysis are included, so both observational and theoretical aspects are described, in a non-mathematical framework. This new edition covers the final decades of the twentieth century, with its major advances in stellar astrophysics: the discovery of extrasolar planets, new classes of stars and the observation of the ultraviolet spectra of stars from satellites. The in-depth coverage makes it essential reading for graduate students working in stellar spectroscopy, professional and amateur astronomers, and historians of science.
This volume explains the microscopic physics operating in stars in advanced stages of their evolution and describes with many numerical examples and illustrations how they respond to this microphysics. Models of low and intermediate mass are evolved through the core helium-burning phase, the asymptotic giant branch phase (alternating shell hydrogen and helium burning) and through the final cooling white dwarf phase. A massive model is carried from the core helium-burning phase through core and shell carbon-burning phases. Gravothermal responses to nuclear reaction-induced transformations and energy loss from the surface are described in detail. Written for senior graduate students and researchers who have mastered the principles of stellar evolution, as developed in the first volume of Stellar Evolution Physics, sufficient attention is paid to how numerical solutions are obtained to enable the reader to engage in model construction on a professional level.
Luminous hot stars represent the extreme upper mass end of normal stellar evolution. Before exploding as supernovae, they live out their lives of a few million years with prodigious outputs of radiation and stellar winds, dramatically affecting both their evolution and environments. A detailed introduction to the topic, this book connects the astrophysics of massive stars with the extremes of galaxy evolution represented by starburst phenomena. A thorough discussion of the physical and wind parameters of massive stars is presented. HII galaxies, their connection to starburst galaxies, and the contribution of starburst phenomena to galaxy evolution through superwinds, are explored. The book concludes with the wider cosmological implications, including Population III stars, Lyman break galaxies and gamma-ray bursts, for each of which massive stars are believed to play a crucial role. This book is ideal for graduate students and researchers in astrophysics interested in luminous hot stars and galaxy evolution. |
![]() ![]() You may like...
DNA Damage and Double Strand Breaks Part…
Fuyuhiko Tamanoi, Kenichi Yoshikawa
Hardcover
R4,447
Discovery Miles 44 470
|