![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter
The first three billion years of cosmic time were the prime epoch of galaxy formation. Characterising galaxies at this epoch is therefore crucial to achieving a major goal of modern astrophysics: to understand how galaxies such as our Milky Way emerged from the primordial density fluctuations in the early Universe and how they evolved through cosmic time. Recent major international investments in observing facilities such as the Atacama Large Millimetre Array (ALMA) and the James Webb Space Telescope (JWST) promise to provide the next leap in our understanding of this topic. This volume gathers the scientific contributions to the International Astronomical Union Symposium 352, which was devoted to this topic. The community of theoretical and observational experts discuss how we can make the most of ALMA and JWST synergies in advancing our understanding of galaxy evolution in the young Universe.
Evolution of Stars and Stellar Populations is a comprehensive
presentation of the theory of stellar evolution and its application
to the study of stellar populations in galaxies. Taking a unique
approach to the subject, this self-contained text introduces first
the theory of stellar evolution in a clear and accessible manner,
with particular emphasis placed on explaining the evolution with
time of observable stellar properties, such as luminosities and
surface chemical abundances. This is followed by a detailed
presentation and discussion of a broad range of related techniques,
that are widely applied by researchers in the field to investigate
the formation and evolution of galaxies.
Stellar magnetism is the study of the magnetic field of the Sun and other stars and is a rapidly developing field of astrophysics. This book, an authoritative account with broad astronomical scope, has grown out of the lifelong work of an outstanding researcher in the subject.
This text, written by two leading experts, reviews the historical observations of supernova explosions in our Galaxy over the past two thousand years and discusses modern observations of the remnants of these explosions at radio and other wavelengths.
Compiled by a team of experts, this textbook introduces the properties and evolution of the most immediately visible objects in the Universe - stars. Designed for elementary university courses in astronomy and astrophysics, it starts with a detailed discussion of our nearest star, the Sun, and describes how solar physicists have come to understand its internal workings. It then considers how we study the basic physical properties and life-cycles of more distant stars, culminating with a discussion of more 'exotic' objects, such as neutron stars and black holes. This second edition has a greater emphasis on the physical and spectral properties of stars, introducing stellar atmospheres, spectral line formation and the role of binary stars in the formation of compact objects. Avoiding complex mathematics, and generously illustrated in colour throughout, this accessible text is ideal for self-study and will appeal to both amateur astronomers and undergraduate students.
This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists. * Essential textbook on the physics of the interstellar and intergalactic medium * Based on a course taught by the author for more than twenty years at Princeton University * Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more * Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium * Reviews diagnostics using emission and absorption lines * Features color illustrations and detailed reference materials in appendices * Instructor's manual with problems and solutions (available only to teachers)
This self-contained astrophysics textbook for advanced undergraduates explores how stars form, what happens to them as they age, and what becomes of them when they die. Students can investigate the physical processes sustaining the energy output of stars during each stage of their evolution and which drive the progression from one stage to the next, and examine the relationship between different stages of stellar evolution and the production of the chemical elements. The textbook contains a wealth of worked examples and exercises with full solutions. Summaries, key facts and equations are clearly identified, and there are full colour illustrations throughout. Drawing on decades of experience in supported learning and independent study, this textbook is an ideal bridging text for astrophysics and physics majors looking to move on from the introductory texts. Accompanying resources to this textbook are available at: http: //www.cambridge.org/features/astrophysics
This book provides a comprehensive survey of modern molecular astrophysics. It includes an introduction to molecular spectroscopy and then addresses the main areas of current molecular astrophysics, including galaxy formation, star forming regions, mass loss from young as well as highly evolved stars and supernovae, starburst galaxies plus the tori and discs near the central engines of active galactic nuclei. All chapters have been written by invited authors who are acknowledged experts in their fields. The thorough editorial process has ensured a uniformly high standard of exposition and a coherent style. The book is unique in giving a detailed view of its wide-ranging subject. It will provide the standard introduction for research students in molecular astrophysics. The book will be read by research astronomers and astrophysicists who wish to broaden the basis of their knowledge or are moving their activities into this burgeoning field. It will enable chemists to learn the astrophysics most related to chemistry as well as instruct physicists about the molecular processes most important in astronomy.
Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.
Not so if the book has been translated into Arabic. Now the reader can discern no meaning in the letters. The text conveys almost no information to the reader, yet the linguistic informa tion contained by the book is virtually the same as in the English original. The reader, familiar with books will still recognise two things, however: First, that the book is a book. Second, that the squiggles on the page represent a pattern of abstractions which probably makes sense to someone who understands the mean ing of those squiggles. Therefore, the book as such, will still have some meaning for the English reader, even if the content of the text has none. Let us go to a more extreme case. Not a book, but a stone, or a rock with engravings in an ancient language no longer under stood by anyone alive. Does such a stone not contain human information even if it is not decipherable? Suppose at some point in the future, basic knowledge about linguistics and clever computer aids allow us to decipher it? Or suppose someone discovers the equivalent of a Rosetta stone which allows us to translate it into a known language, and then into English? Can one really say that the stone contained no information prior to translation? It is possible to argue that the stone, prior to deciphering contained only latent information."
Black Holes are regions of space-time where the gravitational field is so strong that not even light can escape. There has been much written on black holes, however in most cases they are treated as isolated objects. The author has found a number of cases in which the interaction of a black hole with another strong-field system (such as the background universe or another black hole) could be treated analytically. This includes using the powerful method of matched asymptotic expansions. In this book the author considers these wider ranging problems and examples for the first time. This book will be widely read by all those working in gravitation, and PhD students in mathematical physics.
Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.
The simplest guide to astronomy and stargazing! Grasping astronomy has never been easier. The awe of the night sky will soon turn into knowledge of the constellations, planets, and astrological phenomena! Bold graphics and easy-to-understand text make this visual guide the perfect introduction to astronomy and stargazing for those who have little time but a big thirst for knowledge. Inside you'll find: - Simple, easy-to-understand graphics that help to explain astronomy, space, and the night sky in a clear, visual way - The latest astronomical information on black holes, gravitational waves, the origin of the Universe, and the planets of the Solar System - User-friendly star-charts that guide you through the sky using brighter stars as "signposts" to locate harder-to-see objects - Essential advice on the practicalities of stargazing - from observing with the naked eye to using telescopes Each pared-back entry covers the essentials more clearly than ever before. The opening chapters provide an introduction to the Universe, a visual tour of the Solar System, and a guide to more distant objects such as stars and galaxies. Along the way, concepts such as the Big Bang, gravity, and space-time are introduced and explained. Later chapters describe how to navigate around the night sky and introduce some must-see constellations, complete with simple star charts. Whether you are a complete beginner, or simply want a jargon-free reference to astronomy and stargazing, this essential guide is packed with everything you need to understand the basics quickly and easily.
This book journeys into one of the most fascinating intellectual adventures of recent decades - understanding and exploring the final fate of massive collapsing stars in the universe. The issue is of great interest in fundamental physics and cosmology today, from both the perspective of gravitation theory and of modern astrophysical observations. This is a revolution in the making and may be intimately connected to our search for a unified understanding of the basic forces of nature, namely gravity that governs the cosmological universe, and the microscopic forces that include quantum phenomena. According to the general theory of relativity, a massive star that collapses catastrophically under its own gravity when it runs out of its internal nuclear fuel must give rise to a space-time singularity. Such singularities are regions in the universe where all physical quantities take their extreme values and become arbitrarily large. The singularities may be covered within a black hole, or visible to faraway observers in the universe. Thus, the final fate of a collapsing massive star is either a black hole or a visible naked singularity. We discuss here recent results and developments on the gravitational collapse of massive stars and possible observational implications when naked singularities happen in the universe. Large collapsing massive stars and the resulting space-time singularities may even provide a laboratory in the cosmos where one could test the unification possibilities of basic forces of nature.
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.
The New General Catalogue (NCG), originally created in 1888, is the source for referencing bright nebulae and star clusters, both in professional and amateur astronomy. With 7840 entries, it is the most-used historical catalogue of observational astronomy, and NGC numbers are commonly used today. However, the fascinating history of the discovery, observation, description and cataloguing of nebulae and star clusters in the nineteenth century has largely gone untold, until now. This well-researched book is the first comprehensive historical study of the NGC, and is an important resource to all those with an interest in the history of modern astronomy and visual deep-sky observing. It covers the people, observatories, instruments and methods involved in nineteenth-century visual deep-sky observing, as well as prominent deep-sky objects. The book also compares the NGC to modern object data, demonstrating how important the NGC is in observational astronomy today.
This extensively illustrated book presents the astrophysics of galaxies since their beginnings in the early Universe. It has been thoroughly revised to take into account the most recent observational data, and recent discoveries such as dark energy. There are new sections on galaxy clusters, gamma ray bursts and supermassive black holes. The authors explore the basic properties of stars and the Milky Way before working out towards nearby galaxies and the distant Universe. They discuss the structures of galaxies and how galaxies have developed, and relate this to the evolution of the Universe. The book also examines ways of observing galaxies across the whole electromagnetic spectrum, and explores dark matter and its gravitational pull on matter and light. This book is self-contained and includes several homework problems with hints. It is ideal for advanced undergraduate students in astronomy and astrophysics.
Casual stargazers are familiar with many classical figures and asterisms composed of bright stars (e.g., Orion and the Plough), but this book reveals not just the constellations of today but those of yesteryear. The history of the human identification of constellations among the stars is explored through the stories of some influential celestial cartographers whose works determined whether new inventions survived. The history of how the modern set of 88 constellations was defined by the professional astronomy community is recounted, explaining how the constellations described in the book became permanently "extinct." Dr. Barentine addresses why some figures were tried and discarded, and also directs observers to how those figures can still be picked out on a clear night if one knows where to look. These lost constellations are described in great detail using historical references, enabling observers to rediscover them on their own surveys of the sky. Treatment of the obsolete constellations as extant features of the night sky adds a new dimension to stargazing that merges history with the accessibility and immediacy of the night sky.
Originally published in 1957, this book contains twenty-three contributions from a symposium held during the Ninth General Assembly of the International Astronomical Union in Dublin. The papers contained range from present knowledge in stellar instability to the presentation of new research results and focus on the instability among the hot stars of both low and high luminosity and the cool stars and their close binary systems. Papers range from 'Physical processes in novae' to 'Variable stars and problems of stellar formation' to 'Photometric evidence of instability in eclipsing systems'. Accounts of discussion, which followed the presentations, are also included for reference as well as photographs and diagrams. Offering a re-assessment of non-stable stars and recognising, relocating and redefining the issues surrounding stellar instability, this book will be a valuable reference work to anyone interested in the history of physics, astronomy and cosmology.
First published in 1958, and composed primarily of presentations delivered at the Ninth General Assembly of the International Astronomical Union in 1955, this book contains sixteen papers on the subject of the Galactic System in the light of then-recent developments in radio astronomy. The contributors compare new knowledge of our Galactic System with what can be gleaned from other galaxies and star systems, such as the Andromeda nebula. This book will be of value to anyone with an interest in astronomy and in the development of astronomical knowledge.
Guiding the reader through all the stages that lead to the formation of a star such as our Sun, this advanced textbook provides students with a complete overview of star formation. It examines the underlying physical processes that govern the evolution from a molecular cloud core to a main-sequence star, and focuses on the formation of solar-mass stars. Each chapter combines theory and observation, helping readers to connect with and understand the theory behind star formation. Beginning with an explanation of the interstellar medium and molecular clouds as sites of star formation, subsequent chapters address the building of typical stars and the formation of high-mass stars, concluding with a discussion of the by-products and consequences of star formation. This is a unique, self-contained text with sufficient background information for self-study, and is ideal for students and professional researchers alike.
Summarising the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods. Focusing on optical and near-infrared wavelengths, each detailed, up-to-date chapter addresses a different facet of recent innovations, including new instrumentation, techniques and theories; new methods based on laboratory studies, enabling the modelling of polarimetric characteristics for a wide variety of astronomical objects; emerging fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets, and the search for extraterrestrial life; and unique results produced by space telescopes, and polarimeters aboard exploratory spacecraft. With contributions from an international team of accomplished researchers, this is an ideal resource for astronomers and researchers working in astrophysics, earth sciences, and remote sensing keen to learn more about this valuable diagnostic tool. The book is dedicated to the memory of renowned polarimetrist Tom Gehrels.
This book journeys into one of the most fascinating intellectual adventures of recent decades - understanding and exploring the final fate of massive collapsing stars in the universe. The issue is of great interest in fundamental physics and cosmology today, from both the perspective of gravitation theory and of modern astrophysical observations. This is a revolution in the making and may be intimately connected to our search for a unified understanding of the basic forces of nature, namely gravity that governs the cosmological universe, and the microscopic forces that include quantum phenomena. According to the general theory of relativity, a massive star that collapses catastrophically under its own gravity when it runs out of its internal nuclear fuel must give rise to a space-time singularity. Such singularities are regions in the universe where all physical quantities take their extreme values and become arbitrarily large. The singularities may be covered within a black hole, or visible to faraway observers in the universe. Thus, the final fate of a collapsing massive star is either a black hole or a visible naked singularity. We discuss here recent results and developments on the gravitational collapse of massive stars and possible observational implications when naked singularities happen in the universe. Large collapsing massive stars and the resulting space-time singularities may even provide a laboratory in the cosmos where one could test the unification possibilities of basic forces of nature.
Astronomers' Universe Series is a new series aimed at active amateur astronomers but is appropriate to a wider audience of astronomically-informed readers. The book provides an up-to-date account of active galaxies. Lists of such objects and their visual and imaged appearance in commercially available telescopes are an important component of this book. The book makes sense of the chaotic and apparently innumerable types of violently active galaxies. It provides the data and teaches the skills needed for users of small telescopes to observe and image some of these "galaxies in turmoil" for themselves.
From supernovae and gamma-ray bursts to the accelerating Universe, this is an exploration of the intellectual threads that lead to some of the most exciting ideas in modern astrophysics and cosmology. This fully updated second edition incorporates new material on binary stars, black holes, gamma-ray bursts, worm-holes, quantum gravity and string theory. It covers the origins of stars and their evolution, the mechanisms responsible for supernovae, and their progeny, neutron stars and black holes. It examines the theoretical ideas behind black holes and their manifestation in observational astronomy and presents neutron stars in all their variety known today. This book also covers the physics of the twentieth century, discussing quantum theory and Einstein's gravity, how these two theories collide, and the prospects for their reconciliation in the twenty-first century. This will be essential reading for undergraduate students in astronomy and astrophysics, and an excellent, accessible introduction for a wider audience. |
![]() ![]() You may like...
The Stellar Populations of Galaxies…
B. Barbuy, Alvio Renzini
Hardcover
R2,568
Discovery Miles 25 680
A Statistical and Multi-wavelength Study…
Corentin Schreiber
Hardcover
R3,451
Discovery Miles 34 510
Asteroseismology of Stellar Populations…
Andrea Miglio, Patrick Eggenberger, …
Hardcover
Wolf-Rayet Stars - Binaries, Colliding…
Karel A.Van Der Hucht, Peredur M. Williams
Hardcover
R2,576
Discovery Miles 25 760
Dark Matter in Astro- and Particle…
H.V. Klapdor-Kleingrothaus
Hardcover
R2,575
Discovery Miles 25 750
Fifty Years of Quasars - From Early…
Mauro D'Onofrio, Paola Marziani, …
Hardcover
R4,514
Discovery Miles 45 140
|