![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter
The observational evidence for the existence of black holes has grown significantly over recent decades. Stellar-mass black holes are detected as X-ray sources in binary systems, while supermassive black holes, with masses more than a million times the mass of the Sun, lurk in the nuclei of galaxies. These proceedings provide a useful and up-to-date overview of the observations of black holes in binaries, in the center of the Milky Way, and in the nuclei of galaxies, presented by leading expert astronomers. Special attention is given to the formation (including the recent evidence from gamma-ray bursts), physical properties, and demographics of black holes.
Whether stargazing with the naked eye or observing deep space with the largest telescopes in the world, humans have a seemingly neverending fascination with the stars. Our ancestors saw patterns in their random arrangement, inventing both tales of legendary heroes and the pastime of dot-to-dot in one fell swoop. But it's only in the last century or so that the natures of these distant lights have been revealed - and it's more incredible than any legend. How are stars born? How long do they live? And just how many times can you read the word 'trillion' before it starts sounding made up? Find out as astronomer Dr Greg Brown of Royal Observatory Greenwich takes a short diversion from obsessing over black holes to illuminate us about the lives of stars - ending in black holes, naturally.
Editing the proceedings of a scientific meeting is not an easy task. Sometimes people who give an excellent talk do not send the manuscript by the deadline. However, this time, thanks to the punctuality of all the participants, we have this excellent volume for the workshop on mass losing pulsating stars and their circumstellar matter prepared in time. Almost all of the oral presentations including the summary are collected in this volume. We regret that we cannot put in this volume a few posters that we failed to receive before the editorial work. The workshop was planned as a small meeting with less than fifty attendants because the city of Sendai was far from the most of the active institutions. However, the number of submitted papers exceeded the SOC's expectation; many interesting contributions had to be scheduled in the poster session. Still, the oral sessions were so tight that many participants might have felt frustrated for the shortage of discussions. The organizers of the workshop have to apologize to the attendants for the inconvenience caused from such a happy underestimate about the size of the workshop."
Streamlining the extensive information from the original, highly acclaimed monograph, this new An Introduction to the Physics of Interstellar Dust provides a concise reference and overview of interstellar dust and the interstellar medium. Drawn from a graduate course taught by the author, a highly regarded figure in the field, this all-in-one book emphasizes astronomical formulae and astronomical problems to give a solid foundation for the further study of interstellar medium. Covering all phenomena associated with cosmic dust, this inclusive text eliminates the need to consult special physical literature by providing a comprehensive introduction in one source. The book addresses the absorption and scattering of dust, its creation in old stars, as well as emission, cohesion, and electrical charge. With strong attention to detail, the author facilitates a complete understanding from which to build a more versatile application and manipulation of the information. Providing insightful explanations for the utilization of many formulae, the author instructs in the effective investigation of astronomical objects for determining basic parameters. The book offers numerous figures displaying basic properties of dust such as optical constants, specific heat, and absorption and scattering coefficients making it accessible for the reader to apply these numbers to the problem at hand. There is an extensive section and comprehensive introduction to radiative transfer in a dusty medium with many practical pieces of advice and ample illustrations to guide astronomers wishing to implement radiative transfer code themselves. An unparalleled amount of astronomical information in an accessible andpalatable resource, An Introduction to the Physics of Interstellar Dust provides the most complete foundational reference available on the subject.
This thesis by Cole Johnston brings novel insights into the inner workings of young massive stars. By bridging the observational fields of binary stars and asteroseismology this thesis uses state of the art statistical techniques to scrutinise theories of modern stellar astrophysics. Developing upon the commonly used isochrone fitting methodology, the author introduces the idea of isochrone cloud fitting in order to account for the full breadth of physics observed in stars. The author combines this methodology with gravity mode asteroseismic analysis to asses the level of chemical mixing deep within the stellar core in order to determine the star's age and core mass. Wrapped into a robust statistical framework to account for correlations, this methodology is employed to analyse individual stars, multiple systems, and clusters alike to demonstrate that chemical mixing has dramatic impact on stellar structure and evolution.
Interstellar dust grains catalyse chemical reactions, absorb,
scatter, polarise and re-radiate starlight and constitute the
building blocks for the formation of planets. Understanding this
interstellar component is therefore of primary importance in many
areas of astronomy & astrophysics. For example, observers need
to understand how dust effects light passing through molecular
clouds. Astrophysicists wish to comprehend how dust enables the
collapse of clouds or how it determines the spectral behaviour of
protostars, star forming regions or whole galaxies. This book gives
a thorough theoretical description of the fundamental physics of
interstellar dust: its composition, morphology, size distribution,
dynamics, optical and thermal properties, alignment, polarisation,
scattering, radiation and spectral features.
Olbers' paradox states that given the Universe is unbounded,
governed by the standard laws of physics, and populated by light
sources, the night sky should be ablaze with light. Obviously this
is not so. However, the paradox does not lie in nature but in our
understanding of physics. A Universe with a finite age, such as
follows from big-bang theory, necessarily has galaxies of finite
age. This means we can only see some of the galaxies in the
Universe, which is the main reason why the night sky is dark. Just
how dark can be calculated using the astrophysics of galaxies and
stars and the dynamics of relativistic cosmology.
The high time-resolution radio sky represents unexplored astronomical territory. This thesis presents a study of the transient radio sky, focussing on millisecond scales. As such, the work is concerned primarily with neutron stars. In particular this research concentrates on a recently identified group of neutron stars, known as RRATs, which exhibit radio bursts every few minutes to every few hours. After analysing neutron star birthrates, a re-analysis of the Parkes Multibeam Pulsar Survey is described which has resulted in the discovery of 19 new transient radio sources. Of these, 12 have been seen to repeat and a follow-up campaign of observations has been undertaken. These studies have greatly increased our knowledge of the rotational properties of RRATs and enable us to conclude that they are pulsars with extreme nulling and/or pulse-to-pulse modulation. Although the evolution of neutron stars post-supernova is not yet understood, it seems that RRATs fit into the emerging picture in which pulsar magnetospheres switch between stable configurations.
Galaxies have a history: distant galaxies, formed early in the life of the universe, differ from the nearby ones. This book addresses the modeling of galaxy evolution from their cosmological formation to their presently observable structures, presenting the state of the art in the field.
'A book that will make the night sky your lifelong passion. An invitation to immerse yourself in the nature around you and the universe beyond.' - Professor Brian Cox The Secret World of Stargazing is the ultimate astronomy book to set you on your epic journey around the cosmos - it's a simple guide to the skies and makes stargazing fun, easy and enjoyable for all - absolutely no equipment is required! Adrian West, AKA the internet sensation VirtualAstro, will take you through the seasons, showing you exactly what you can spot in the sky throughout the year, whether you're in your back garden or sitting on an exotic beach somewhere! While you're learning how to spot constellations, meteors and comets, you will be switching off your busy mind, sitting still in nature and paying attention to the small details that make up the big picture of life. You'll finish reading this beautiful book and come away with a sense of grounding, connection, knowledge and a whole new appreciation of the sky above and the world outside your own - it will soothe your soul. 'An excellent, readable, bright guide to the night sky.' - Dara O'Briain 'A superb introduction to astronomy.' - Chris Packham
Embark on an awe-inspiring and informative journey through our Solar System and beyond in this illuminating astronomy book! Discover how big the Universe is, why our view of the sky is constantly changing, what came before the Big Bang, and so much more. 3, 2, 1, blast off! Inside the pages of this comprehensive guide to astronomy for beginners, you'll discover: - Simple text and step-by-step graphics make astronomy easy to understand - Fun facts and tip-of-the-tongue questions are presented through bite-sized factoids and question-and-answer features - Clear explanations demystifying more advanced topics such as cosmic rays, dark matter, and black hole collisions An out-of-this-world reference book about space that introduces you to the weird and wonderful world of astronomy and space exploration. From the structure of the Milky Way to the Earth's nearest celestial body, the Moon, How Space Works takes you on an unforgettable tour through the stars and galaxies, and to the furthest reaches of space! Answering all your burning questions about space, from ancient white dwarf stars to the Mars Rover, this visual guide explains the basics of astronomy through bold graphics and step-by-step artworks. It's the ultimate book for armchair astronomers and space-technology enthusiasts looking for reliable and up-to-date facts and explanations. DK's How Things Work series uses dynamic graphics and jargon-free text to explain the modern world simply and clearly. Packed with fascinating facts and stats, these visual guides cover everything from science to philosophy, making complex topics more accessible than ever before!
This book addresses the fascinating subject of astrophysics from its theoretical basis to predominant research conducted in the field today. An accomplished researcher in the field and a well-known expositor, the author strikes a balance that allows the serious reader to appreciate the current issues without previous knowledge of the subject.Astronomy and Astrophysics * The Equations of Stellar Structure * The Gas Characteristics * The Structure of a Star * Computation of Stellar Evolution * Evolutionary Track * Binary Systems * Star Formation * Rotation of Stars * Supernova * Close Binary Systems * Special Topics * The Galaxy
Dust is widespread in the galaxy. To astronomers studying stars it
may be just an irritating fog, but it is becoming widely recognized
that cosmic dust plays an active role in astrochemistry. Without
dust, the galaxy would have evolved differently, and planetary
systems like ours would not have occurred.
Carbon plays a fundamental role on Earth. It forms the chemical backbone for all essential organic molecules produced by living organisms. Carbon-based fuels supply most of society's energy, and atmospheric carbon dioxide has a huge impact on Earth's climate. This book provides a complete history of the emergence and development of the new interdisciplinary field of deep carbon science. It traces four centuries of history during which the inner workings of the dynamic Earth were discovered, and documents extraordinary scientific revolutions that changed our understanding of carbon on Earth forever: carbon's origin in exploding stars; the discovery of the internal heat source driving the Earth's carbon cycle; and the tectonic revolution. Written with an engaging narrative style and covering the scientific endeavours of more than a hundred pioneers of deep geoscience, this is a fascinating book for students and researchers working in Earth system science and deep carbon research.
All stars are born in groups. The origin of these groups has long been a key question in astronomy, one that interests researchers in star formation, the interstellar medium, and cosmology. This volume summarizes current progress in the field, and includes contributions from both theorists and observers. Star clusters appear with a wide range of properties, and are born in a variety of physical conditions. Yet the key question remains: How do diffuse clouds of gas condense into the collections of luminous objects we call stars? This book will benefit graduate students, newcomers to the field, and also experienced scientists seeking a convenient reference.
This book uses new data from the very low radio frequency telescope LOFAR to analyse the magnetic structure in the giant radio galaxy NGC6251. This analysis reveals that the magnetic field strength in the locality of this giant radio galaxy is an order of magnitude lower than in other comparable systems. Due to the observational limitations associated with capturing such huge astrophysical structures, giant radio galaxies are historically a poorly sampled population of objects; however, their preferential placement in the more rarefied regions of the cosmic web makes them a uniquely important probe of large-scale structures. In particular, the polarisation of the radio emissions from giant radio galaxies is one of the few tools available to us that can be used to measure magnetic fields in regions where the strength of those fields is a key differentiator for competing models of the origin of cosmic magnetism. Low frequency polarisation data are crucial for detailed analyses of magnetic structure, but they are also the most challenging type of observational data to work with. This book presents a beautifully coupled description of the technical and scientific analysis required to extract valuable information from such data and, as the new generation of low frequency radio telescopes reveals the larger population of giant radio galaxies, it offers a significant resource for future analyses.
The formation of the first supermassive black holes is one of the main open questions in our understanding of high-redshift structure formation. In this book, we aim to provide a summary of state-of-the-art modern research on this topic, exploring the formation of massive black holes from a fluid-dynamical, stellar-dynamical and chemical perspective. The book thus presents a solid theoretical foundation, a comparison with current observations and future observational perspectives with upcoming missions such as the Square Kilometre Array, the European Extremely Large Telescope, the Euclid satellite as well as possible detections via gravitational waves.
This comprehensive overview of stellar astrophysical fluid dynamics includes properties of pulsating stars; helioseismology; convection and mixing in stellar interiors; and dynamics of stellar rotation, planet formation and the generation of stellar and planetary magnetic fields. Each chapter is written by a leading expert in the field and extensive references to technical literature are made.
"If you buy just one guide...you won't do better than this" BBC Sky at Night Magazine "I will continue to enjoy 'Philip's Stargazing' as the months go by" Helen Sharman, Astronaut "Very useful indeed" Chris Lintott, Sky at Night presenter Now including the top astronomical places to visit, star festivals and the latest on star parties in Britain and Ireland, the new 2023 edition is totally up-to-date for exploring the wonder of the night skies, month-by-month and day-by-day. Whether you're a seasoned astronomer or just starting out, Philip's Stargazing 2023 is the only book you'll need. Compiled by experts and specially designed for easy and daily use, Stargazing 2023 acts as a handily illustrated and comprehensive companion. - 12 updated sky charts for year-round astronomical discovery - Month-to-Month information. Daily Moon Phase Calendar, highlighting special lunar events throughout the year - Planet Watch for ideal viewing days in 2023 - The best places to experience Dark Skies, along with the latest on Star Festivals and Star Parties - Top places to visit for astronomical insights - Expert advice and insight throughout from internationally renowned Prof Nigel Henbest - The latest on electronic telescopes from expert Robin Scagell - Complete calendar of major astronomical events, including the Top 20 Sky Sights of 2023 - Jargon Buster, explaining common or confusing terms - The planets' movements explained from solar and lunar eclipses to meteor showers and comets
This book covers normal galaxies, distant galaxies, studies based on far-infrared diagnostics, quasar absorption lines, and the properties of nearby galaxies. The timely volume provides an essential reference for astronomers working in the field of high-redshift galaxies. It includes the lectures delivered at the XI Canary Islands Winter School of Astrophysics, and reviews scientific results as well as main questions in the field.
By the star physicist and author of multiple #1 Sunday Times bestsellers, a major and definitive narrative work on black holes and how they can help us understand the universe. At the heart of our galaxy lies a monster so deadly it can bend space, throwing vast jets of radiation millions of light years out into the cosmos. Its kind were the very first inhabitants of the universe, the black holes. Today, across the universe, at the heart of every galaxy, and dotted throughout, mature black holes are creating chaos. And in a quiet part of the universe, the Swift satellite has picked up evidence of a gruesome death caused by one of these dark powers. High energy X-ray flares shooting out from deep within the Draco constellation are thought to be the dying cries of a white dwarf star being ripped apart by the intense tides of a supermassive black hole – heating it to millions of degrees as it is shredded at the event horizon. They have the power to wipe out any of the universe’s other inhabitants, but no one has ever seen a black hole itself die. But 1.8 billion light years away, the LIGO instruments have recently detected something that could be the closest a black hole gets to death. Gravitational waves given off as two enormous black holes merge together. And now scientists think that these gravitational waves could be evidence of two black holes connecting to form a wormhole – a link through space and time. It seems outlandish, but today’s physicists are daring to think the unthinkable – that black holes could connect us to another universe. At their very heart, black holes are also where Einstein’s Theory of General Relativity is stretched in almost unimaginable ways, revealing black holes as the key to our understanding of the fundamentals of our universe and perhaps all other universes. Join Professors Brian Cox and Jeff Forshaw in exploring our universe’s most mysterious inhabitants, how they are formed, why they are essential components of every galaxy, including our own, and what secrets they still hold, waiting to be discovered.
This book presents the status of research on very massive stars in the Universe. While it has been claimed that stars with over 100 solar masses existed in the very early Universe, recent studies have also discussed the existence and deaths of stars up to 300 solar masses in the local Universe. This represents a paradigm shift for the stellar upper-mass limit, which may have major implications far beyond the field of stellar physics. The book comprises 7 chapters, which describe this discipline and provide sufficient background and introductory content for graduate (PhD) students and researchers from different branches of astronomy to be able to enter this exciting new field of very massive stars.
Without interstellar dust, the Universe as we see it today would not exist. Yet at first we considered this vital ingredient merely an irritating fog that prevented a clear view of the stars and nebulae in the Milky Way and other galaxies. We now know that interstellar dust has essential roles in the physics and chemistry of the formation of stars and planetary systems, the creation of the building blocks of life, and in the movement of those molecules to new planets. This is the story in this book. After introducing the materials this interstellar dust is made of, the authors explain the range of sizes and shapes of the dust grains in the Milky Way galaxy and the life cycle of dust, starting from the origins of dust grains in stellar explosions through to their turbulent destruction. Later on we see the variety of processes in interstellar space involving dust and the events there that cause the dust to change in ways that astronomers and astrobiologists can use to indirectly observe those events. This book is written for a general audience, concentrating on ideas rather than detailed mathematics and chemical formulae, and is the first time interstellar dust has been discussed at an accessible level.
The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.
This book introduces an analytic method to describe the shadow of black holes. As an introduction, it presents a survey of the attempts to observe the shadow of galactic black holes. Based on a detailed discussion of the Plebanski-Demianski class of space-times, the book derives analytical formulas for the photon regions and for the boundary curve of the shadow as seen by an observer in the domain of outer communication. It also analyzes how the shadow depends on the motion of the observer. For all cases, the photon regions and shadows are visualized for various values of the parameters. Finally, it considers how the analytical formulas can be used for calculating the horizontal and vertical angular diameters of the shadow, and estimates values for the black holes at the centers of our Galaxy near Sgr A* and of the neighboring galaxy M87. |
![]() ![]() You may like...
Knowledge-Based Software Engineering…
Maria Virvou, Fumihiro Kumeno, …
Hardcover
R4,599
Discovery Miles 45 990
Ecosystem Services from Forest…
Ajith H. Perera, Urmas Peterson, …
Hardcover
R5,894
Discovery Miles 58 940
|