Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter
Binary systems of stars are as common as single stars. Stars evolve primarily by nuclear reactions in their interiors, but a star with a binary companion can also have its evolution influenced by the companion. Multiple star systems can exist stably for millions of years, but can ultimately become unstable as one star grows in radius until it engulfs another. This volume, first published in 2006, discusses the statistics of binary stars; the evolution of single stars; and several of the most important kinds of interaction between two (and even three or more) stars. Some of the interactions discussed are Roche-lobe overflow, tidal friction, gravitational radiation, magnetic activity driven by rapid rotation, stellar winds, magnetic braking and the influence of a distant third body on a close binary orbit. A series of mathematical appendices gives a concise but full account of the mathematics of these processes.
This book reviews recent observations of non-evolved and evolved binary populations in clusters and the field with special emphasis on statistical biases, incompleteness, and distribution functions. It considers different binary types and presents and discusses recent results in the field.
Presents an entertaining and accessible approach whilst also providing a rigorous and comprehensive presentation of the subject. Describes how to unveil the ages of stellar populations in distant galaxies that we cannot resolve into individual stars. Contains historical notes about these techniques, outstanding major problems, and a discussion on future developments in the field.
Presents an entertaining and accessible approach whilst also providing a rigorous and comprehensive presentation of the subject. Describes how to unveil the ages of stellar populations in distant galaxies that we cannot resolve into individual stars. Contains historical notes about these techniques, outstanding major problems, and a discussion on future developments in the field.
This thesis presents an in-depth, high-resolution observational study on the very beginning of the formation process: the fragmentation of dense molecular clouds known as infrared dark clouds (IRDCs). Using the Submillimeter Array (SMA) and Very Large Array (VLA) radio interferometers, the author has discovered a common picture of hierarchical fragmentation that challenges some of the leading theoretical models and suggests a new, observation-driven understanding of how massive star formation in clustered environments may begin: it is initiated by the hierarchical fragmentation of a dense filament from 10 pc down to 0.01 pc, and the stellar mass buildup is simultaneously fed by hierarchical accretion at similar scales. The new scenario points out the importance of turbulence and filamentary structure, which are now receiving increasing attention and further tests from both observers and theorists.
Set against the background of beautiful Mirabello Bay, astronomers from fourteen countries met at Elounda, Crete in the period 7-18June, 1999 to debate some of the most compelling issues of present day astrophysics. Neutron stars and black holes have been at the forefront of astrophysics for over thirty years. As recently as ten years ago it was still being debated whether galactic stellar-mass black holes existed or not.It is now generally accepted that many (possibly a thousand) stellar-mass black holes - most of them still undetected - lie in low mass X-ray binary (LMXB) systems; a few of them are detected every year as X-ray or gamma-ray transients. These objects are more massive than 3 M, the maximum possible mass 0 for a neutron star, and show none of the tell-tale signs of neutron stars, such as X-ray bursts and X-ray pulsations. It is quite remarkable that all LMXBs display a similar temporal and spectral behaviour, 'independently of whether the accreting compact object is a neutron star or a black hole. A broad debate on these similarities and differences naturally constituted one of the main focal points during the Elounda meeting. Evidence on these aspects has been forthcoming from the Compton Gamma-ray Observatory (CGRO), the ROSAT and ASCA satellites, the Rossi X-Ray Timing Explorer (RXTE), and from the Beppo SAX Observatory."
Proceedings of the Midnight Sun Conference, held in Tromso, Norway, July 1-8, 1987"
The gravitational million-body problem is a model for understanding the dynamics of rich star clusters. This text describes the theory astronomers need for studying globular star clusters. After introducing the million-body problem from various view-points, the book systematically develops the tools needed for studying the million-body problems in nature, and introduces the most important theoretical models. Written for graduate students and researchers in astrophysics and astronomy, this text also has important applications in the fields of theoretical physics, computational science and mathematics.
The previous Saas-Fee Advanced Course dedicated to the interstellar medium took place in 1972. The tremendous scientific advances that have occurred in this field since then, in particular owing to the availabihty of receivers working at completely unexplored wavelength bands, fuUy justified a new set of lectures. As a consequence, the members of the Swiss Society for Astrophysics and As tronomy voted that "The Galactic Interstellar Medium" should be the subject of the 1991 course. The 21st Saas Fee Advanced Course took place in Les Diablerets from 18 to 23 March 1991, gathering together about 80 participants from all over the world, but mostly from Europe. According to a rule that has proved to lead to success, but also to chal lenge the lecturers' energy, the format of a Saas-Fee Advanced Course consists traditionally of 28 lectures of 45 minutes which take place in the morning and late afternoon, leaving ample time for discussions, self-study, hiking or skiing. Despite the inordinate work load imposed, this year's lecturers felt that the subject was sufficiently dense to increase the lecture time by 1/3! This proved judicious and left more time for questions and discussions during the lectures.
'It is strongly biased towards the author's speciality of galaxy morphology, and particularly to bars and rings. To be fair, these are often given fairly short shrift in other textbooks, so this is a useful source of detail on such topics from an expert. In addition, references to original technical papers are given throughout which makes the book a handy introduction to the literature (which students may well find useful).'The Observatory MagazineThe main goal of the book is to introduce the reader to the world of spiral galaxies, how spirals were discovered, what they represent from a physical point of view, and what people have learned about the universe and the nature of galaxies in general from the study of spirals. Topics include early discoveries of nebulae, the island universe concept, the structure of spirals as seen both visually with telescopes and in images obtained with different filters, the role of spirals in the discovery of interstellar dust and dark matter, the different kinds of spiral galaxies and the importance of bars and rings, how different non-spiral galaxy types such as elliptical galaxies and S0 galaxies connect to spirals, and how spirals have contributed to our understanding of star formation and evolution, galaxy formation and evolution, the cosmological distance scale, and the universal expansion. The Milky Way as a spiral galaxy is also discussed.The book is profusely illustrated and not only a discourse on the spirals, but is also a personal reminiscence based on the author's studies of spiral galaxies over the past 45 years.
It is the stars, The stars above us, govern our conditions. William Shakespeare, King Lear A Few Words about What, Why and How The structure of the stars in general, and the Sun in particular, has been the subject of extensivescienti?cresearchanddebateforoveracentury.Thediscoveryofquantum theoryduringthe?rsthalfofthenineteenthcenturyprovidedmuchofthetheoretical background needed to understand the making of the stars and how they live off their energysource. Progress in the theoryof stellar structurewasmade through extensive discussions and controversies between the giants of the ?elds, as well as brilliant discoveries by astronomers. In this book, we shall carefully expose the building of the theory of stellar structure and evolution, and explain how our understanding of the stars has emerged from this background of incessant debate. About hundred years were required for astrophysics to answer the crucial ques tions: What is the energy source of the stars? How are the stars made? How do they evolve and eventually die? The answers to these questions have profound im plications for astrophysics, physics, and biology, and the question of how we our selves come to be here. While we already possess many of the answers, the theory of stellar structure is far from being complete, and there are many open questions, for example, concerning the mechanisms which trigger giant supernova explosions. Many internal hydrodynamic processes remain a mystery. Yet some global pictures can indeed be outlined, and this is what we shall attempt to do here.
In 1965 Fritz Zwicky proposed a class of supernovae that he called "Type V", described as "excessively faint at maximum". There were only two members, SN1961v and Eta Carinae. We now know that Eta Carinae was not a true supernova, but if it were observed today in a distant galaxy we would call it a "supernova impostor". 170 years ago it experienced a "great eruption" lasting 20 years, expelling 10 solar masses or more, and survived. Eta Carinae is now acknowledged as the most massive, most luminous star in our region of the Galaxy, and it may be our only example of a very massive star in a pre-supernova state. In this book the editors and contributing authors review its remarkable history, physical state of the star and its ejecta, and its continuing instability. Chapters also include its relation to other massive, unstable stars, the massive star progenitors of supernovae, and the "first" stars in the Universe.
This second volume of a comprehensive three-volume work on theoretical astrophysics deals with stellar physics. After reviewing the key observational results and nomenclature used in stellar astronomy, the book develops a solid understanding of central concepts including stellar structure and evolution, the physics of stellar remnants, pulsars, binary stars, the sun and planetary systems, interstellar medium and globular clusters. Throughout, the reader's comprehension is developed and tested with more than seventy-five exercises. This indispensable volume will allow graduate students to master the material sufficiently to read and engage in research with heightened understanding. It can be used alone or in conjunction with Volume 1, which covers a wide range of astrophysical processes, and the forthcoming Volume 3, on galaxies and cosmology.
By the star physicist and author of multiple #1 Sunday Times bestsellers, a major and definitive narrative work on black holes and how they can help us understand the universe. At the heart of our galaxy lies a monster so deadly it can bend space, throwing vast jets of radiation millions of light years out into the cosmos. Its kind were the very first inhabitants of the universe, the black holes. Today, across the universe, at the heart of every galaxy, and dotted throughout, mature black holes are creating chaos. And in a quiet part of the universe, the Swift satellite has picked up evidence of a gruesome death caused by one of these dark powers. High energy X-ray flares shooting out from deep within the Draco constellation are thought to be the dying cries of a white dwarf star being ripped apart by the intense tides of a supermassive black hole – heating it to millions of degrees as it is shredded at the event horizon. They have the power to wipe out any of the universe’s other inhabitants, but no one has ever seen a black hole itself die. But 1.8 billion light years away, the LIGO instruments have recently detected something that could be the closest a black hole gets to death. Gravitational waves given off as two enormous black holes merge together. And now scientists think that these gravitational waves could be evidence of two black holes connecting to form a wormhole – a link through space and time. It seems outlandish, but today’s physicists are daring to think the unthinkable – that black holes could connect us to another universe. At their very heart, black holes are also where Einstein’s Theory of General Relativity is stretched in almost unimaginable ways, revealing black holes as the key to our understanding of the fundamentals of our universe and perhaps all other universes. Join Professors Brian Cox and Jeff Forshaw in exploring our universe’s most mysterious inhabitants, how they are formed, why they are essential components of every galaxy, including our own, and what secrets they still hold, waiting to be discovered.
Binary systems of stars are as common as single stars. This original text provides a pedagogical and comprehensive introduction to binary stars. The author combines theory and observations at all wavelengths to develop a unified understanding of binaries of all categories. Chapters review methods for calculating orbits, the Roche model, ideas about mass exchange and loss, methods for analyzing light curves, the masses and dimensions of different binary systems, and imaging the surfaces of stars and accretion structures. This volume offers advanced undergraduate and graduate students a thorough introduction to binary stars that will aid their learning of stellar astrophysics, stellar structure and evolution, and observational astrophysics.
'It is strongly biased towards the author's speciality of galaxy morphology, and particularly to bars and rings. To be fair, these are often given fairly short shrift in other textbooks, so this is a useful source of detail on such topics from an expert. In addition, references to original technical papers are given throughout which makes the book a handy introduction to the literature (which students may well find useful).'The Observatory MagazineThe main goal of the book is to introduce the reader to the world of spiral galaxies, how spirals were discovered, what they represent from a physical point of view, and what people have learned about the universe and the nature of galaxies in general from the study of spirals. Topics include early discoveries of nebulae, the island universe concept, the structure of spirals as seen both visually with telescopes and in images obtained with different filters, the role of spirals in the discovery of interstellar dust and dark matter, the different kinds of spiral galaxies and the importance of bars and rings, how different non-spiral galaxy types such as elliptical galaxies and S0 galaxies connect to spirals, and how spirals have contributed to our understanding of star formation and evolution, galaxy formation and evolution, the cosmological distance scale, and the universal expansion. The Milky Way as a spiral galaxy is also discussed.The book is profusely illustrated and not only a discourse on the spirals, but is also a personal reminiscence based on the author's studies of spiral galaxies over the past 45 years.
The mystery of gravity has captivated us for centuries. But what is gravity and how does it work? This engaging book delves into the bizarre and often counter-intuitive world of gravitational physics. Join distinguished astrophysicist Professor Luciano Rezzolla on this virtual journey into Einstein's world of gravity, with each milestone presenting ever more fascinating aspects of gravitation. Through gentle exposure to concepts such as spacetime curvature and general relativity, you will discover some of the most curious consequences of gravitational physics, such as black holes, neutron stars and gravitational waves. The author presents and explains one of the most impressive scientific achievements of recent times: the first image of a supermassive black hole. Written by one of the key scientists involved in producing these results, you'll get a behind-the-scenes view of how the image was captured and discover what happens to matter and light near a black hole.
7 Hydrodynamic Instabilities in Close Binary Systems (Frederic A. Rasio) 121 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 121 7. 1. 1 The stability of self-gravitating fluid equilibria 121 7. 1. 2 Astrophysical motivation . 123 7. 1. 3 Common envelope systems 125 7. 2 Dynamical instabilities. . . . . . . 126 7. 2. 1 Physical mechanism . . . . 126 7. 2. 2 Application to coalescing neutron star binaries 127 7. 3 Secular instabilities. . . . . . . . . . . 130 7. 3. 1 Physical mechanism . . . . . . 130 7. 3. 2 Application to contact binaries 133 8 Common Envelope Evolution in Binary Systems (Mario Livio) 141 8. 1 Introduction. . . . . . . . . . . . . . . . . . . . 141 8. 2 The entrance into the common envelope phase . . . . . 142 8. 3 The outcome of the CE phase. . . . . . . . . . . . . . . 145 8. 4 How close can we get to observing the common envelope Phase? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8. 4. 1 How can PNe with binary nuclei be used to constrain CE physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8. 4. 2 How can nova systems be used to constrain CE physics 148 8. 4. 3 Other tests of common envelope evolution 150 8. 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 151 9 Structure and Evolution of Massive Close Binaries (Dany Vanbeveren) 155 9. 1 Introduction. . . . . . . . . . . . . . . . . . 155 9. 2 Definitions. . . . . . . . . . . . . . . . . . . 156 9. 3 Intermediate mass and massive single stars 156 9. 3. 1 Observations . . . . . . . . . . . . . 156 9. 3. 2 Stellar structure equations for non-rotating IMS's and MS's 160 9. 3. 3 Evolutionary computations of non-rotating IMS's and MS's 162 9. 3. 4 Overall comparison with observations '" 163 9. 3. 5 The role of rotation in single star evolution . . .
This long-awaited graduate textbook, written by two pioneers of the field, is the first to provide a comprehensive introduction to the observations, theories and consequences of stellar winds. The rates of mass loss and the wind velocities are explained from basic physical principles. This book also includes chapters clearly explaining the formation and evolution of interstellar bubbles, and the effects of mass loss on the evolution of high- and low-mass stars. Each topic is introduced simply to explain the basic processes and then developed to provide a solid foundation for understanding current research. This authoritative textbook is designed for advanced undergraduate and graduate students and researchers seeking an understanding of stellar winds and, more generally, supersonic flows from astrophysical objects. It is based on courses taught in Europe and the US over the past twenty years and includes seventy problems (with answers) for coursework or self-study.
The first Asia-Pacific Conference on Few-Body Problems in Physics took place from August 23 to August 28, 1999, at the Noda campus of the Sci ence University of Tokyo in Noda-city and Sawayaka Chiba Kenmin Plaza in Kashiwa-city, a suburb of Tokyo close to the Narita-Tokyo International Air port, with the Frontier Research Center for Computation Sciences (FRCCS) of the Science University of Tokyo as the host institute. The High Energy Accel erator Research Organization (KEK), the Institute of Physical and Chemical Research (RIKEN), the Research Center for Nuclear Physics (RCNP)-Osaka University, the Physical Society of Japan, and the Association of Asia Pacific Physical Societies (AAPPS) supported this conference. The conference was initiated in the Asia Pacific area as a counterpart to the successful European Conference on Few-Body Problems in Physics (APFB99), in addition to the International Few-Body Conference Series and the Few Body Gordon Conference series in North America. The Physics of Few-Body Problems covers, as is well known, systems with finite numbers of particles in contrast to many-body systems with very large numbers of particles. Therefore, it covers such wide fields as mesoscopic, atom-molecular, exotic atom, nucleon, hyperon, and quark-gluon physics, plus their applications."
With the advent of large, ground-based telescopes and space telescopes, it is now possible to study in detail stars outside our galaxy - in neighbouring galaxies in the so-called Local Group. The VIII Canary Islands Winter School of Astrophysics gathered leading experts from around the world to review this exciting area of research - extragalactic stellar astrophysics. This volume presents eight specially written articles based on the meeting, reviewing how the study of stars in nearby galaxies can be used to understand stellar and galactic structure and evolution in general. This book covers all aspects of extragalactic stellar astrophysics: stellar physics, stellar winds, stellar evolution, the use of photometric and spectroscopic techniques for studying extragalactic stars, stellar populations, chemical evolution, star formation histories and the calibration of the extragalactic distance scale. This volume provides graduate students and researchers with an invaluable introduction to and reference on the new subject of extragalactic stellar astrophysics.
In the past two decades, scientists have made remarkable progress in understanding stars. This graduate-level textbook provides a systematic, self-contained and lucid introduction to the physical processes and fundamental equations underlying all aspects of stellar astrophysics. The timely volume provides authoritative astronomical discussions as well as rigorous mathematical derivations and illuminating explanations of the physical concepts involved. In addition to traditional topics such as stellar interiors and atmospheres, the reader is introduced to stellar winds, mass accretion, nuclear astrophysics, weak interactions, novae, supernovae, pulsars, neutron stars and black holes. A concise introduction to general relativity is also included. At the end of each chapter, exercises and helpful hints are provided to test and develop the understanding of the student. As the first advanced textbook on stellar astrophysics for nearly three decades, this long-awaited volume provides a thorough introduction for graduate students and an up-to-date review for researchers. |
You may like...
A Brief Welcome to the Universe - A…
Neil De Grasse Tyson, Michaela Strauss, …
Paperback
R247
Discovery Miles 2 470
A Statistical and Multi-wavelength Study…
Corentin Schreiber
Hardcover
R3,306
Discovery Miles 33 060
The Stellar Populations of Galaxies…
B. Barbuy, Alvio Renzini
Hardcover
R2,452
Discovery Miles 24 520
Wolf-Rayet Stars - Binaries, Colliding…
Karel A.Van Der Hucht, Peredur M. Williams
Hardcover
R2,460
Discovery Miles 24 600
Galaxy Evolution in Groups and Clusters…
Catarina Lobo, Margarida Serote Roos, …
Hardcover
R2,833
Discovery Miles 28 330
Astronomy and Big Data - A Data…
Kieran Jay Edwards, Mohamed Medhat Gaber
Hardcover
R2,789
Discovery Miles 27 890
|