![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter
Pulsating and eccentric binary stars play a fundamentally important role in deciphering the mass distribution within stars. The present volume reviews the fundamental concepts of both radial and nonradial oscillations in the stars, including the Sun. Helio- and astroseismological results are reviewed, from the basics to the most recent developments. A new theory is presented, which seems to explain the mechanism of the light and radial velocity variations of recently discovered Ap stars. This textbook covers almost all kinds of variable stars of widely different characteristics. It will serve as a reference text for a very long time to come, not only for specialists but also for undergraduate students of physics and astronomy.
Living material contains about twenty different sorts of atom combined into a set of relatively simple molecules. Astrobiologists tend to believe that abiotic mater ial will give rise to life in any place where these molecules exist in appreciable abundances and where physical conditions approximate to those occurring here on Earth. We think this popular view is wrong, for it is not the existence of the building blocks of life that is crucial but the exceedingly complicated structures in which they are arranged in living forms. The probability of arriving at biologically significant arrangements is so very small that only by calling on the resources of the whole universe does there seem to be any possibility of life originating, a conclusion that requires life on the Earth to be a minute component of a universal system. Some think that the hugely improbable transition from non-living to living mat ter can be achieved by dividing the transition into many small steps, calling on a so-called 'evolutionary' process to bridge the small steps one by one. This claim turns on semantic arguments which seek to replace the probability for the whole chain by the sum of the individual probabilities of the many steps, instead of by their product. This is an error well known to those bookies who are accustomed to taking bets on the stacking of horse races. But we did not begin our investigation from this point of view."
This monograph reports on the recent developments in the area of interplanetary and pre-solar dust grains. Chemical and isotope analyses of dust are discussed, especially with the aim to study the origin and evolution of interplanetary dust. Recent observations of extraterrestrial dust obtained with LDEF, Galileo and Ulysses are presented. Several velocity mechanisms for dust particles are discussed, in addition to their impact on cosmic or cometary dust grain capture devices. This volume is specially intended for research scientists and advanced (graduate) students in the fields of astronomy, astrophysics and geo and cosmochemists. Scientists in related fields, like the environmental sciences (especially researchers of artificial debris from rockets and boosters), are also likely to be interested in this work.
The accretion process is thought to play a key role in the Universe. This book explains, in a form intelligible to graduate students, its relation to the formation of new stars, to the energy release in compact objects and to the formation of black holes. The monograph describes how accretion processes are related to the presence of jets in stellar objects and active galactic nuclei and to jet formation. The authors treat theoretical work as well as current observational facts. This volume of the highly esteemed Les Houches series is meant as an advanced text that can serve to attract students to exciting new research work in astrophysics.
This review of the most up-to-date observational and theoretical information concerning the chemical evolution of the Milky Way compares the abundances derived from field stars and clusters, giving information on the abundances and dynamics of gas.
Quasars, and the menagerie of other galaxies with "unusual nuclei," now collectively known as Active Galactic Nuclei or AGN, have, in one form or another, sparked the interest of astronomers for over 60 years. The only known mechanism that can explain the staggering amounts of energy emitted by the innermost regions of these systems is gravitational energy release by matter falling towards a supermassive black hole --- a black hole whose mass is millions to billions of times the mass of our Sun. AGN emit radiation at all wavelengths. X-rays originating at a distance of a few times the event horizon of the black hole are the emissions closest to the black hole that we can detect; thus, X-rays directly reveal the presence of active supermassive black holes. Oftentimes, however, the supermassive black holes that lie at the centers of AGN are cocooned in gas and dust that absorb the emitted low energy X-rays and the optical and ultraviolet light, hiding the black hole from view at these wavelengths. Until recently, this low-energy absorption presented a major obstacle in observational efforts to map the accretion history of the universe. In 1999 and 2000, the launches of the Chandra and XMM-Newton X-ray Observatories finally broke the impasse. The impact of these observatories on X-ray astronomy is similar to the impact that the Hubble Space Telescope had on optical astronomy. The astounding new data from these observatories have enabled astronomers to make enormous advances in their understanding of when accretion occurs."
We stand at the threshold of an exciting era of Asteroseismology. In a few months' time, the Canadian small-satellite asteroseismology mission MOST will be laun ched. Danish and French missions MONS and COROT should follow, with the ESA mission Eddington following in 2007/8. Helioseismology has proved spec tacularly successful in imaging the internal structure and dynamics of the Sun and probing the physics of the solar interior. Ground-based observations have detected solar-like oscillations on alpha Centauri A and other Sun-like stars, and diagnostics similar to those used in helioseismology are now being used to test and constrain the physics and evolutionary state of these stars. Multi-mode oscillations are being observed in an abundance of other stars, including slowly pulsating B stars (SPB stars), delta Scuti stars, Ap stars and the pulsating white dwarfs. New classes of pulsators continue to be discovered across the Hertzsprung-Russell diagram. For good reason it was decided to entitle our conference 'Asteroseismology Across the HR Diagram' . Yet the challenges still to be faced to make asteroseismology across the HR diagram a reality are formidable. Observation, data analysis and theory all pose hard problems to be overcome. In conceiving this meeting, the aim of the organisers was to facilitate a cross-fertilization of ideas and approaches between researchers working on different pulsators and with different areas of expertise. We venture to suggest that in this the conference was a great success."
In this Symposium, researchers specializing in pulsation, rotation, magnetic fields and stellar winds are brought together for the first time in order to broaden our understanding of O and B stars. Thanks to advances in digital spectroscopy, new types of pulsating B stars have been discovered. The pulsations can be understood in terms of the recent revision of metal opacities, but the effects of rapid rotation and magnetic fields need further study. Observations in the UV and X-ray regions demonstrate that many B and Be stars show other activity, besides pulsation which is not yet understood. The reason for the enhanced mass loss in B stars is a question which dominates the Symposium and which remains unanswered, although it is surely to be found in activity at or near the photosphere coupled with rotation. It is shown that the geometry of the circumstellar envelopes around Be stars is indeed a flattened disk as they can now be optically resolved. The variability of radiatively-driven winds from O and B stars are likely related to the rotation of the star. This underlines the central theme of the book: that the various phenomena seen in these stars cannot be studied in isolation.
This volume documents the contributions presented at the III Scientific Meeting of the Spanish Astronomical Society (SEA). Covering a wide range of topics, the 92 contributed papers give a comprehensive overview of the current state of Spanish astronomy. The Proceedings include special reviews dealing with the cosmological evolution of star-forming galaxies, the nature of cosmic gamma-ray bursts, infrared astrophysics with ISO, and the distance scale after Hipparcos, with special emphasis on the development of the next generation of instruments to propel astrophysical research into the new century. The contents of these Proceedings thus reflect the broad interests of the Spanish astronomical community. The significance of these proceedings can hardly be exaggerated, since here, for the first time, the SEA publishes the proceedings of its own scientific meeting. The intended audience is professional astronomers and graduate astronomy students worldwide.
Many of the ISO observers who assembled for this workshop at Ringberg c- tle met for the third time in the Bavarian Alps. At two previous meetings in 1989 and 1990 surveys were only a minor topic. At that time we were excited by the discoveries of the IRAS survey mission and wanted to follow it up with pointed observations using an observatory telescope equipped with versatile instruments. With the rapid development of detector arrays and stimulated by ISO's Observing Time Allocation Committee, however, surveys eventually became an issue for the upcoming mission. In a review paper on "Infrared S- veys - the Golden Age of Exploration" given at an IAU meeting in 1996, Chas Beichman already mentioned that there are ISO surveys. They were at the bottom of his hit list, while the winners were future space missions (Planck, SIRTF, etc. ) and ground-based surveys in preparation (Sloan, 2MASS, DE- NIS, etc. ). He organized his table according to the relative explorable volume, calculated from the solid angle covered on the sky and the maximum distance derived from the detection sensitivity. Clearly, with this ?gure of merit, ISO, as a pointed observatory, is rated low. Applying the classical de?nition of a survey, i. e. to search in as large a volume as possible for new or rare objects and/or study large numbers of objects of various classes in order to obtain statistical properties, ISO was indeed limited.
This Atlas provides a complete set of images of Local Group Galaxies (excluding the three for which identification atlases are already in print) and shows the most important objects, including many thousands of individual stars and interstellar objects. It is unique in its coverage and format and provides a source of these fundamental data that will be used for many years. Researchers, students and even amateur astronomers will be able to use the Atlas to identify and study the various components of the nearly 30 important galaxies covered by the Atlas. The objects identified on the more than 200 charts include variable stars, globular star clusters, open star clusters, stellar associations, emission regions, supernova remnants, planetary nebulae and dust clouds. Each galaxy is accompanied by an extensive bibliography.
This volume is written by leading scientists in the field, who review the current state of our knowledge of tidal streams in the Milky Way, the Andromeda galaxy, and in other nearby galaxies. The cosmological origins of dwarf galaxies and the physical processes by which they are tidally disrupted into streams and incorporated into galaxy halos are discussed. The techniques that have been used to identify tidal streams are presented and will be useful to researchers who would like to find substructures in the next generation of optical sky surveys, including Pan-STARRS and LSST. The methods that are currently under development to constrain both large scale distribution of dark matter in the Milky Way and the (small scale) lumpiness of the dark matter distribution are also explained. The authors also provide motivation for future spectroscopic surveys of Milky Way halo stars, which will aid both in the identification of tidal streams and the constraint of dark matter properties. This volume is aimed at graduate students who are beginning this field of research, but is also a resource for researchers who study tidal streams and related fields. In addition to presenting the physical processes by which tidal streams are created, it also reviews the current state of the observations and the progress towards utilizing these observations to constrain the distribution of dark matter in the Milky Way. The book will introduce anyone with a background in astrophysics to the field of tidal streams.
The aim of the inaugural meeting of the Sant Cugat Forum on
Astrophysics was to address, in a global context, the current
understanding of and challenges in high-energy emissions from
isolated and non-isolated neutron stars, and to confront the
theoretical picture with observations of both the Fermi satellite
and the currently operating ground-based Cherenkov telescopes.
Participants have also discussed the prospects for possible
observations with planned instruments across the multi-wavelength
spectrum (e.g. SKA, LOFAR, E-VLT, IXO, CTA) and how they will
impact our theoretical understanding of these systems.
This volume contains the proceedings from the conference "The Labyrinth of Star Formation" that was held in Crete, Greece, in June 2012, to honour the contributions to the study of star formation made by Professor Anthony Whitworth of Cardiff University. The book covers many aspects of theoretical and observational star formation: low-mass star formation; young circumstellar discs; computational methods; triggered star formation; the stellar initial mass function; high-mass star formation and stellar clusters. Each section starts with a review paper, followed by papers discussing recent theoretical and observational work. This volume summarises our current understanding of star formation and is useful for both graduate students and researchers alike.
White dwarfs, neutron stars, and (solar mass) black holes are the collapsed cores of stars which, near the ends of their luminous lives, have shed most of their mass in supernova explosions or other, less spectacular, instabilities. Here gravity crushes matter to realms that lie far beyond present empirical knowledge. This book explores the diverse forms that such compact stars can possibly take, as constrained by the laws of nature: the general principles of relativity and quantum mechanics, the properties of nuclear matter deduced from nuclei, and the asymptotic freedom of quarks at high density. The book is self contained. It reviews general relativity, essential aspects of nuclear and particle physics, and general features of white dwarfs, neutron stars and black holes; it includes background on such matters as stellar formation and evolution, the discovery of pulsars and associated phenomena, and the strange-matter hypothesis. The book develops a theory for the constitution of neutron stars and the more exotic Hyperon Stars, Hybrid Stars (containing a quark matter core surrounded by an intricate lattice of quark and hadronic matter) and Strange Stars and Dwarfs (composed of the three light quark flavors sheathed in a solid skin of heavy ions). This second edition has been revised throughout to clarify discussions and bring data up to date; it includes new figures, several new sections, and new chapters on Bose condensates in neutron stars and on phase transitions.
This volume contains the Proceedings of the Fourth Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomfa, SEA). The meeting was held at the Universidade de Santiago de Compostela in Galicia from September 11 to 14, 2000. The event brought together 156 participants who pre- sented their latest results in many different subjects. In comparison with the previous scientific meetings of the Society, the numbers of oral talks and poster contributions (95 and 51, respectively) are rapidly increasing, confirming that the SEA conferences are becoming a point of reference to assess the interests and achievements of astrophysical research in Spain. During the meeting, the SEA made public the granting of the Prize to the Best Spanish Ph. D. Thesis in As- tronomy and Astrophysics for the period 1998-1999 to Dr. H. Socas. This is the first time that the SEA is awarding this prize, which aim is to encourage young spanish astrophysicists to pursue a high level scientific career. The Society is indebted to the Universidade de Santiago de Compostela, and, in particular, to the Observatorio Astronomico Ramon Marfa Aller, for its hospi- tality. The Local Organizing Committee took care of all the logistics details to ensure a nice stay for all the participants. The effort of the Scientific Organizing Committee was decisive in determining the organizational and scientific success of the meeting.
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. This second edition of the book is updated throughout and contains a completely new chapter discussing state of the art and results of numerical simulations of ergospheric disk jets occurring in magnetohydrodynamic accretion flows.
Papers of the Paris meeting in June 1990 on Local Group Galaxies, molecules in early-type galaxies, observations of spiral structure in molecular clouds, a comparison with other gaseous components and IR emission, interacting galaxies and starbursts, gas and star dynamics, galaxy evolution, IRAS ult
There are as many different kinds of stars as there are stars themselves. Each an individual, every one unique. In this arresting and lavishly illustrated volume, noted astronomy writer and teacher Jim Kaler choose 100 stars to illustrate the mind-boggling variety of the stars' shapes and sizes, their immense ages, and the vast range of configurations in which they exist.||From AG Draconis to Z Andromedae, this alphabetically arranged volume first lists each star's resident constellation, its class, its apparent brightness as viewed from Earth, its distance from our Sun, and its visual luminosity. Then the real story begins. In choosing his "top 100," Kaler has aimed not just at providing a representative sample of the Universe's extraordinarily diverse population, but at capturing their complexity, their dynamism, and the amazing view they provide into the extraordinary physical forces at play in the Universe.||James B. Kaler is Professor of Astronomy at the University of Illinois at Urbana-Champaign. He has held both Fulbright and Guggenheim Fellowships, and has been awarded medals for his work from the University of Liege (Belgium) and the University of Mexico. He is the author of six books and dozens of articles on astronomy, including The Little Book of Stars (Copernicus Books, 2000) and lectures frequently. He also directs and maintains several educational websites, including the highly regarded and award-winning "Stars of the Week" site at the University of Illinois: http://www.astro.uiuc.edu/~kaler/sow/sow.html.||Reviews:||¿Most people know about Sirius, Canopus and Antares, but not everyone will be familiar with EG 129, HZ 21 and Polaris Australis, the dim star close to the south pole of the sky. Enter The Hundred Greatest Stars by James Kaler...Following a very clear general introduction to stellar astronomy, Kaler embarks on an informative tour through his hundred favourite stars, each given a page of text with an appropriate illustration on the facing page¿The really clever aspect of the book is that as well as describing the hundred stars, often bringing out aspects which are unfamiliar, Kaler succeeds in giving an excellent broad survey of recent developments in stellar astronomy. As is to be expected, the text is immensely authoritative¿The illustrations are beautiful...¿|¿New Scientist
The objective of this workshop was to put together observational and theoretical works on outflows from different kinds of astrophysical objects, occurring on different scales and at various evolutionary phases, and to discuss the impact of observations from future space missions. For the stars, we thought to follow throughout the evolution the relevance (rates and dynamical rrodes) of the mass loss phenomenon, e. g. to explain how and when massive stars loose most of their ini tial mass to end up with typical WD masses. The observations of the solar wind were included for being a unique case where the origin and propagation of the outflow can be resolved. We thought that the comparison with similar phenomena occurring in galactic outflows would be fruitful, as demonstrated by recent works on galactic winds and jets. The interest of having this workshop in Torino came because there are groups in this area, at the Astronomical Observatory and at the Institute of Physics of the University, involved in the theoretical and observational studies of outflows from astrophysical objects. The members of the Scientific Organizing Conmi ttee were: V. Castellani, C. Cesarski, P. Conti, A. Ferrari, A. Gabriel, M. Grewing, Y. Kondo, H. Lamers, V. Manno, M. Rees and R. Schilizzi. The Local Organizing Conmi ttee was: L. Bianchi, G. Massone and E. Antonucci. During the workshop the following topics were treated: the solar wind, the mass loss from cool stars and from hot stars (m. s.
In July 1992, over 300 astronomers attended the Third Tetons Summer School on the subject of "The Environment and Evolution of Galaxies". This book presents 28 papers based on invited review talks and a panel discussion on "The Nature of High Redshift Objects". The major themes include: the interstellar and intergalactic medium, galaxy formation and evolution, cooling flows, quasars and radiation backgrounds, and interactions between galaxies/AGNs and their environment. Recent advances with the ROSAT, COBE and Hubble Space Telescope are discussed, together with current theoretical developments. The tutorial nature of the papers should make this book a useful supplement for professional astonomers, graduate students, and senior undergraduates. As with previous Tetons conferences, this book provides both the current state of observational and theoretical research and material complementary to courses in extragalactic and interstellar astrophysics.
Light scattering and absorption by small homogeneous particles can be worked-out exactly for spheres and infinite cylinders. Homogeneous particles of irregular shapes, when averaged with respect to rotation, have effects that can in general be well-approximated by reference to results for these two idealised cases. Likewise, small inhomogeneous particles have effects similar to homogeneous particles of the same average refractive index. Thus most problems can be solved to a satisfactory approximation by reference to the exact solutions for spheres and cylinders, which are fully stated here in the early part of the book. The sum of scattering and absorption, the extinction, is too large to be explained by inorganic materials, provided element abundances in the interstellar medium are not appreciably greater than solar, H 0 and NH3 being essentially excluded in the 2 general medium, otherwise very strong absorptions near 3p, m would be observed which they are not. A well-marked extinction maximum in the ultraviolet near 2200A has also not been explained satisfactorily by inorganic materials. Accurately formed graphite spheres with radii close to O.02p, m could conceivably provide an explanation of this ultraviolet feature but no convincing laboratory preparation of such spheres has ever been achieve
It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was no longer the exclusive playground for ISM studies and that by reaching out to other galaxies astronomy had gained the advantage of having an "outside" view, though at the expense of giving up some linear resolution. Studies of the ISM in other galaxies are intimately connected to studies of the ISM in the Milky Way."
The NATO Advanced Research Workshop on "White Dwarfs", held in June 2002 at the Astronomical Observatory of Capodimonte in Naples, Italy, continues the long tradition of the European Work- shop series on "White Dwarfs", which started in Kiel in 1974 by Prof. Volker Weidemann. Since then, similar workshops were organized al- most every two years: Frascati (1976), Tel Aviv (1978), Paris (1981), Kiel (1984), Frascati (1986), Toulouse (1990), Leicester (1992), Kiel (1994), Blanes (1996), Troms0 (1998) and Newark-Delaware (2000). The proceedings of these meetings, together with those from the IAU Colloquia in Rochester (NY, 1979) and Hanover (New Hampshire, 1988), represent a unique record of how the research field of white dwarfs has developed in more a quarter of a century. We hope that the present volume, which contains a large number ofcontributions on different topics, will provide an updated and broadened view of this very active field of research. th The format of this workshop, which is the 13 of the series, keeps that ofprevious meetings: givingthe same amount oftime to all speak- ers, no parallel sessions and no limitations on the number of posters.
1. The Workshop and this Tome In the excellent bucolic setting of SchloB Ringberg in Upper Bavaria, over 50 scientists assembled during the week of 23-28 September 1996 to discuss recent results, both theoretical and observational in nature, on the large scale structure of the Universe. Such a topic is perhaps nowadays far too encompassing, and is essentially all of what we used to call "observational cosmology. " The original philosophy of the organization of this meeting was deliber ated aimed at the younger community and their contributions. As a conse quence, the content of the presentations was refreshingly new, as it should be. In spite of the deficiences caused by the lack of certain key researchers in this field, for one reason or another, the final result was rewarding to all. Although the conference was held in Fall 1996, the contributions contained herein were submitted as late as Spring 1998, thus the content maintains some degree of trendiness. Originally the current volume was to be a "proceedings. " This refers to the usual archival tome that fills one's shelf and is rarely consulted, except to see the canonical group photo, which by the way, we also have. Nevertheless, I wanted something more than that. Although the field is rapidly changing, with so-called facts in a state ofconstant volubility, now is a good time for reflection prior to the commencement ofthe Sloan Survey, presumably the definitive large-scale program of low- to moderate-redshift galaxies in our lifetime." |
![]() ![]() You may like...
Flight Of The Diamond Smugglers - A Tale…
Matthew Gavin Frank
Paperback
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
1 Recce: Volume 3 - Through Stealth Our…
Alexander Strachan
Paperback
|