![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > The environment > Waste management > General
This brief gives a summary of the soluble bio-based substances (SBO) field. Urban bio-wastes of differing compositions and ageing conditions represent a promising source of soluble bio-based substances (SBO), potentially able to perform as chemical auxiliaries for applications in the chemical industry and in environmental remediation. In particular, SBO process development, characterization and scale-up is described and bioassay studies discussed. This brief also discusses the use of SBOs in wastewater treatment in the context of 'green' processes, their role as humic-like substances, and their potential use as photocatalysts for the degradation of pollutants present in aqueous solutions (dyes, pharmaceuticals, chlorophenols). Furthermore, the role of SBOs as complexing agents for iron ions in the implementation of the photo-Fenton processes under mild pH conditions is also explored. Finally, SBOs are showcased in their capacity as organic component alternatives to petrochemical products for the synthesis of new materials.
This book is not designed to be an exhaustive work on mine wastes. It aims to serve undergraduate students who wish to gain an overview and an understanding of wastes produced in the mineral industry. An introductory textbook addressing the science of such wastes is not available to students despite the importance of the mineral industry as a resource, wealth and job provider. Also, the growing imp- tance of the topics mine wastes, mine site pollution and mine site rehabilitation in universities, research organizations and industry requires a textbook suitable for undergraduate students. Until recently, undergraduate earth science courses tended to follow rather classical lines, focused on the teaching of palaeontology, cryst- lography, mineralogy, petrology, stratigraphy, sedimentology, structural geology, and ore deposit geology. However, today and in the future, earth science teachers and students also need to be familiar with other subject areas. In particular, earth science curriculums need to address land and water degradation as well as rehabili- tion issues. These topics are becoming more important to society, and an increasing number of earth science students are pursuing career paths in this sector. Mine site rehabilitation and mine waste science are examples of newly emerging disciplines. This book has arisen out of teaching mine waste science to undergraduate and graduate science students and the frustration at having no appropriate text which documents the scienti?c fundamentals of such wastes.
The purpose of the Third National Conference on Environmental Science and Technology, which was held in Greensboro, North Carolina on September 12-14, 2007 was to address pollution prevention, solutions, and research needs and foster relationships that could result in partnerships needed to protect and sustain the - vironment and improve the quality of life. The following topics are included in this book: Pollution Prevention, Fate and Transport of Contaminants, Bioremediation, Bio-processing, Innovative Environmental Technologies, Global Climate Change, and Environmental Justice and Ethics. Several discussions about Global Climate Change, Pollution Prevention, En- ronmental Justice and Ethics among Godfrey A. Uzochukwu (Waste Management Institute, North Carolina A & T State University), Sherry Southern and Jeffrey Al- son (DOE-Savannah River Site), Thomas Parker (CDM), Glennis Nelson (CDM), Jason Callaway (Allied Waste), Steve Roland (O'Brien & Gere), Marv Richa- son (O'Brien & Gere) and Rick Crume (US Environmental Protection Agency) set the stage for the Third National Conference on Environmental Science and Technology. The following persons served on the Executive Conference Comm- tee: G. B. Reddy (Professor of Environmental Microbiology), Shoou-Yuh Chang (Professor of Environmental Engineering), Vinayak Kabadi (Professor of Che- cal Engineering), Keith Schimmel (Associate Professor of Chemical Engineering), Emmanuel Nzewi (Professor and Director of Civil and Environmental Engine- ing), Stephanie Luster-Teasley (Assistant Professor of Environmental Engineering) and Godfrey A. Uzochukwu (Professor and Director, Waste Management Ins- tute). These individuals approved the conference theme - Environmental Science and Technology.
This book focuses on the fundamental concept of and current endeavors in "urban mining" among those who are interested in both metal resources and ecology. Systems for recycling and reusing precious metals and rare-earth minerals contained in used and discarded electronics are introduced in this book. The target audience is not academic researchers in the resource management and ecology fields but, rather, citizens who are concerned about our future environment and want to do something for the future.
This interdisciplinary book incorporates various aspects of environment, ecology, and natural disaster management including cognitive informatics and computing. It fosters research innovation and discovery on basic science and information technology for addressing various environmental problems, while providing the right solutions in environment, ecology, and disaster management. This book is a unique resource for researchers and practitioners of energy informatics in various scientific, technological, engineering, and social fields to disseminate original research on the application of digital technology and information management theory and practice to facilitate the global transition toward sustainable and resilient energy systems. Cognitive informatics is also the need of the hour and deals with cutting-edge and multidisciplinary research area that tackles the fundamental problems shared by modern informatics, computation, software engineering, AI, cybernetics, cognitive science, neuropsychology, medical science, systems science, philosophy, linguistics, economics, management science, and life sciences, which this book also presents.
This monograph on chemical treatment is one of a series of eight on innovative site and waste remediation technologies that are the culmination of a multi organization effort involving more than 100 experts over a two year period. It provides the experienced, practicing professional guidance on the application of innovative processes considered ready for full-scale application. Other monographs in this series address bioremediation, soil washing/soil flushing, solvent chemical extraction, stabilization/ solidifica tion, thermal desorption, thermal destruction, and vacuum vapor extraction. 7. 7 Chemical Treatment The term chemical treatment, as used in this monograph, refers to the use of reagents to destroy or chemically modify target contaminants by means other than pyrolysis or combustion. The monograph addresses processes that chemically treat contaminated soils, groundwaters, surface waters, and, to a limited extent, concentrated contaminants. Chemical treatment is a means of converting hazardous constituents into less environmentally ob jectionable forms in order to meet treatment objectives. This monograph addresses substitution, oxidation, and chemical precipi tation processes. It addresses processes within these classes that are suffi ciently advanced for full-scale application. There are a number of emerging technologies within these classes that are in the research or an early devel opment stage, not yet ready for full-scale application, that appear to be very promising technologically. Six such technologies are briefly addressed in Appendix A."
Environmental remediation technologies to control or prevent pollution from hazardous waste material is a growing research area in academia and industry, and is a matter of utmost concern to public health, to improve ecology and to facilitate the redevelopment of a contaminated site. Recently, in situ and ex situ remediation technologies have been developed to rectify the contaminated sites, utilizing various tools and devices through physical, chemical, biological, electrical, and thermal processes to restrain, remove, extract, and immobilize mechanisms to minimize the contamination effects. This handbook brings altogether classical and emerging techniques for hazardous wastes, municipal solid wastes and contaminated water sites, combining chemical, biological and engineering control methods to provide a one-stop reference. This handbook presents a comprehensive and thorough description of several remediation techniques for contaminated sites resulting from both natural processes and anthropogenic activities. Providing critical insights into a range of treatments from chemical oxidation, thermal treatment, air sparging, electrokinetic remediation, stabilization/solidification, permeable reactive barriers, thermal desorption and incineration, phytoremediation, biostimulation and bioaugmentation, bioventing and biosparging through ultrasound-assisted remediation methods, electrochemical remediation methods, and nanoremediation, this handbook provides the reader an inclusive and detailed overview and then discusses future research directions. Closing chapters on green sustainable remediation, economics, health and safety issues, and environmental regulations around site remediation will make this a must-have handbook for those working in the field.
Among various industries releasing wastewater into the environment, printing, dyeing and textile industries are of great importance as they frequently contain high amounts of colorful compounds having high chemical and biological oxygen demands. Health related effects of colorants are extensively reported; which necessitates the seriousness of dye removal from water and wastewater. The utilization of advanced oxidation processes (AOPs) in dye degradation has gained considerable attention recently due to the release of high energetic radicals as oxidants that are capable of removing dye compounds. This Volume 1 presents versatile applications of AOPs in dye removal. Accordingly, processes such as Ozone-based AOPs, UV irradiation, catalytic AOPs, etc are discussed with the aim of dye removal under different operational parameters. The role of different nanoparticles is also investigated. By presenting the fundamentals of AOPs as well as recent advances, this book is useful for environmental engineers and chemists who are concerned with wastewater pollution and treatment.
During the past five years increased awareness of environmental contamination by nitroaromatic compounds has led to a dramatic increase in research on their biodegradation. The resulting discoveries have markedly extended our understanding of degradation mecha nisms and pathways in bacteria and fungi. Futhermore, this new basic knowledge promises the development of field applications of biodegradation systems for nitroaromatic com pounds. In May of 1994, an International Symposium on the Biodegradation of Nitro aromatic Compounds was held in Las Vegas, Nevada. This symposium brought together the scientists at the frontiers of research into the biodegradation of nitro aromatic compounds. The invited speakers were asked to review their area of expertise and write a critical, comprehensive synthesis of their work and related work by others. This book is the result of their efforts. The emphasis of the reviews is on basic research in biodegradation and biotransfor mation. Therefore, the reactions of nitroaromatic compounds in plants, animals, bacteria, fungi, soil, and even nonbiological systems are considered. The goal of the work is to provide the reader with an appreciation of the tremendous range of possibilities for metabolism of aromatic nitro compounds and the experimental approaches used to understand them. This volume should be of interest to biochemists, microbiologists, engineers, toxicologists, and anyone interested in the behavior of synthetic chemicals in the environment or in living systems. Furthermore, a variety of commercial applications can be envisioned for some of the reactions described here.
This volume, unlike the three preceding it, represents the collected papers from an experiment with an "electronic symposium." Co-participators in this symposium included The George Washington University, The Smithsonian Institution, Clark Atlanta University, the Agriculture Research Service of the United States Department of Agriculture, The University of Georgia, Morris Brown College, Spellman College, Morehouse College, North Carolina State University at Raleigh, The United States Food and Drug Administration, and the Forest Service of the United States Department of Agriculture among others. This unusual "electronic symposium" concept was developed by members of the Program, Planning and Organizing Committee as an alternative to the more costly convention-type symposium. As before, leading scientists in specific topic areas were invited to participate. Topic Session chairpersons were encouraged to arrange their own method of communication by telephone, electronic mail, or conference call, and report their findings back to the symposium center at The George Washington University. Additional papers were accepted from individuals and laboratories who are actively involved in relevant areas of research and study. Participation was also arranged for internationally established scientists. International authors are represented herein from Nigeria, Italy, Spain, Brazil and Argentina. Our goal was to present a research composite volume that reflected current developments, informed reviews, new and recently developing areas of the present state of knowledge as it relates to these proceeding topics. All of the reports included in this volume have undergone scientific, technical and editorial peer review.
Several long-term trends in technology evolution have become apparent since these symposia began in 1989. Earlier presenters more frequently discussed treatment methods involving harsh and extensive human intervention. As the symposia have continued, the number of presentations describing extremely harsh and expensive treatment technologies have gradually been supplanted by more subtle and gentler methods. Such methods include subsurface-engineered barriers, phytoremediation, and bioremediation. Nineteen manuscripts were selected for inclusion in this volume, based upon peer review, scientific merit, the editors' perceptions of lasting value or innovative features, and the general applicability of either the technology itself or the scientific methods and scholarly details provided by the authors. General topics include: soil treatment, groundwater treatment, and radioactive waste treatment.
This book is a collection of all the lectures by the professors attending the 3rd "Interna tional School on Marine Chemistry" held in Ustica (Palermo, Italy, September 2000), under the auspices of the United Nations and the Italian Chemical Society. The School was organized by the University of Palermo in co-operation with the Natural Marine Reserve of Ustica Island. The Organising Committee of the School wishes to thank the University of Messina, the University of Roma "La Sapienza: ' the Italian University Consortium of Environ mental Chemistry, and the Marine Reserve of Ustica Island for their financial support to the School. This book has been printed with the financial support of the Environmental Re search Centre CIRITA of the University of Palermo. thank all the professors whose outstanding scientific contributions have The editors made it possible to publish this book. Professor Antonio Gianguzza Professor Ezio Pelizzetti Professor Silvio Sammartano Contents Part I Biogeochemical Processes at the Air-Water and Water-Sediment Interface .............................................. ."
This book has been a long time in preparation. Initially it grew out of our frustrating attempts over the past ten years to identify the filamentous bacteria seen in large numbers in most activated sludge plants, and the realization that we know very little about them and the other microbial populations in these systems. Unfortunately this book does not provide many answers to the problems these filamentous bacteria can cause, but we hope it might encourage microbiologists and engineers to communi cate more with each other and to spend some time trying to understand the tax onomy, ecology and physiology of activated sludge microbes. It is now very timely, for example, to try to provide these filamentous bacteria with proper taxonomically valid names and to determine their correct place in bacterial classifications. This book is not meant to compete directly with the books by Gray (1989, 1990) nor the excellent manual published by Jenkins and coworkers (1993b), which has been invaluable to us and others trying to identify filamentous bacteria. Wanner's book (1994a) also provides an excellent account of the problems of bulking and foaming caused by filamentous bacteria. These publications and others by Eikelboom's group have made an enormous contribution to the study of filamentous bacteria, and will con tinue to do so."
Over the past ten years, innovative technologies have shown that advanced oxidation processes are highly promising when applied to the remediation of polluted water or wastewater as they don t generate any sludge or solid material of hazardous nature. "Advances in Ultrasound Technology for Environmental Remediation" reviews the fundamentals of ultrasound technology and the state of the art developments in ultrasound-based free radical generation in environmental remediation and pollution prevention. It also presents the challenges of introducing ultrasound technology into large-scale environmental remediation applications and examines the methods used to improve ultrasound technology. Indeed, ultrasonic systems are extremely sensitive and vulnerable to operational parameters which cannot be controlled without a good knowledge and understanding of physical and chemical phenomena. "Advances in Ultrasound Technology for Environmental Remediation" features the theory and fundamentals of ultrasound technology and discusses its potential as an alternative method in environmental remediation."
This volume provides a current look at how development of intensive live stock production, particularly hogs, has affected human health with respect to zoonotic diseases primarily transmitted by food but also by water, air and oc cupational activity. While information presented focuses on the development of increasing livestock production in Canada, examples are given and compar isons are made with other countries (Denmark, Taiwan, the Netherlands and the United States) where the levels of livestock production are much more intense and where the industry is more mature. Canada is also searching for solutions to enable handling the growing volume of its livestock waste properly. Lessons learned from the experience of those who have gone before are invaluable and are drawn together in this volume to serve as useful guidance for others in plot ting the courses of action possible to avoid serious environmental setbacks and negative human health effects through foodborne illness. A significant portion of the text is devoted to a discussion of enteric illness in humans caused by zoonotic pathogens. The second chapter deals with sur vival of pathogens (which cause foodborne illness) in manure environments. An evaluation of the human health hazard likely to occur from the use of ma nure as fertilizer is important because of the recent trend toward an increase in foodborne illness from the consumption of minimally processed fruits and vegetables that may have been fertilized with animal-derived organic materials.
The research papers in this book present current knowledge of the sources, pathways, behavior, and effects of trace elements in soils, waters, plants, and animals. It is of interest to a variety of readers, including public health and environmental professionals, consultants, and academicians.
Twentyfour years have gone by since the publication of K. Lohner and H. MOiler's comprehen sive work "Gemischbildung und Verbrennung im Ottomotor" in 1967 1.1]. Naturally, the field of mixture formation and combustion in the spark-ignition engine has wit nessed great technological advances and many new findings in the intervening years, so that the time seemed ripe for presenting a summary of recent research and developments. There fore, I gladly took up the suggestion of the editors of this series of books, Professor Dr. H. List and Professor Dr. A. Pischinger, to write a book summarizing the present state of the art. A center of activity of the Institute of Internal-Combustion Engines and Automotive Engineering at the Vienna Technical University, which I am heading, is the field of mixture formation -there fore, many new results that have been achieved in this area in collaboration with the respective industry have been included in this volume. The basic principles of combustion are discussed only to that extent which seemed necessary for an understanding of the effects of mixture formation. The focal point of this volume is the mixture formation in spark-ignition engines, covering both the theory and actual design of the mixture formation units and appropriate intake manifolds. Also, the related measurement technology is explained in this work."
Reservoirs for Wastewater Storage and Reuse is a compendium of available information on this emergent technology, from the role that wastewater reservoirs can play within general water resources management and wastewater reuse policy, to the design and operation of the units, including removal efficiencies for different pollutants. Furthermore, a detailed description of the ecological structure and function of the ecosystem of reservoirs is given. This book summarizes more than 20 years of research and development in Israel where more than 200 of these reservoirs are in operation. It includes both theoretical developments and practical experience gained by designers, operators and farmers. Potential geographic areas for the use of these reservoirs are the whole Mediterranean region, the Pacific coasts of both South and North America, the Atlantic coasts of Africa, the Middle East, and other regions suffering water shortage.
Water is regarded as an important element for sustainable development and many countries are attempting to provide clean water for municipal and industrial sectors. Owning to population explosion, industrial activities, agricultural practices and urbanisation, water bodies are polluted with various pollutants such as dyes, heavy metals, etc.. This first volume focuses on utilization of different promising nanocomposites for water and wastewater remediation. It provides an overview of wastewater treatment technologies, and explores the performace of materials such as organic-inorganic polymer hybrids, hydroxyapatite, magnetic composites (with polymers and biomaterials), zeolites, and so on in water and wastewater decontamination. The present edition takes into account various types of pristine and modified materials in different water treatment methods such as adsorption, catalysis and photocatalysis. Recent advances and developments are discussed in this book, and it provides a valuable resource for researchers and professionals in different fields such as environmental and chemical engineering.
This book provides extensive information on the chemicals that inhabit our environment, our food, our water and our air and the impact that they may be having on human health. The author is a medical scientist, with training in the law. The book documents current understanding about pesticides in food, the plastics revolution, toxic metals, air, water and electronic waste pollutants, chemical exposure in the workplace, radiation pollutants, chemical exposure and hearing loss, how our bodies deal with chemicals, genetic variability and the risk of disease, the effect of chemicals on genes, mitochondria and the immune system and what we can do about it all. Industrialisation has resulted in many thousands of chemicals, which are being continuously developed and often escaping from where they are used into our human environment, without us really knowing enough about them. In high dosages or with continuous small dosage, the evidence suggests, that many of them could interfere with human health and some of them are known to be doing so. But for the vast majority, we are left wondering whether some could be responsible for some diseases the causes of which are inadequately understood. Every chapter is thoroughly reinforced with several pages of references from the peer-reviewed literature.
The accumulation of large amounts of ash from fossil fuel combustion for electric power plant generation is becoming a major environmental concern in the United States. Furthermore, stringent environmental regulations mandated by the Environmental Protection Agency through the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, as well as state and local environmental regulations may result in even more ash production with subsequent contact with the environment. The concentrations of trace elements in coal residues are extremely variable and depend on the composition of the original coal, conditions during combustion, the efficiency of emission control devices, storage and handling ofbyproducts, and climate. The research papers in this book were presented as a part of the Sixth International Conference on the Biogeochemistry of Trace Elements held at the University of Guelph, Ontario, Canada, from July 29-August 2, 2001. The purpose of this corit'erence was to present current knowledge on the source, pathways, behavior and effects of trace elements in soils, waters, plants and animals. In addition, the book also includes invited research papers from scientists who have done significant research in the area of coal and coal combustion byproducts. All the research papers presented herein have been subjected to peer review.
At the dawn of the 21st century, biotechnology is emerging as a key enabling technology for sustainable environmental protection and stewardship. Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling illustrates the current technological applications of microorganisms in wastewater treatment and in the control of waste gas emissions. In the first section of the book special emphasis is placed on the use of rigorous mathematical and conceptual models for an in-depth understanding of the complex biology and engineering aspects underlying the operation of modern wastewater treatment installations. The second part addresses waste gas biofiltration, an expanding biotechnological application of microbial metabolism for air quality assurance through processes ranging from the abatement of hazardous volatile pollutants to the elimination of nuisance odors. It will be a valuable reference source for environmental scientists, engineers and decision makers involved in the development, evaluation or implementation of biological treatment systems. For more information on Strategy and Fundamentals, see Focus on Biotechnology, Volume 3A, and for more information on Soil Remediation, see Focus on Biotechnology, Volume 3B.
Soil represents the oldest and most-used building material, yet up to now the subject of earthen structures has not been fully addressed. This book describes the principles of soil as construction material including its treatment using geosynthetics and stabilization. The book focuses on the principles, logic of processes, understanding of the most important problems, so that all participants in the construction project can build earth structures more safely and economically.
The book describes the theory and current practices for design of earth lateral support for deep excavations in soil. It addresses basic principles of soil mechanics and explains how these principles are embodied in design methods including hand calculations. It then introduces the use of numerical methods including the fundamental "beam on springs" models, and then more sophisticated computer programmes which can model soil as a continuum in two or three dimensions. Constitutive relationships are introduced that are in use for representing the behaviour of soil including a strain hardening model, and a Cam Clay model including groundwater flow and coupled consolidation. These methods are illustrated by reference to practical applications and case histories from the author's direct experience, and some of the pitfalls that can occur are discussed. Theory and design are strongly tied to construction practice, with emphasis on monitoring the retaining structures and movement of surrounding ground and structures, in the context of safety and the Observational Method. Examples are presented for conventional "Bottom-up" and "Top-down" sequences, along with hybrid sequences giving tips on how to optimise the design and effect economies of cost and time for construction. It is written for practising geotechnical, civil and structural engineers, and especially for senior and MSc students.
This book addresses waste generation problems from various sectors, including industries, agriculture, and household. It focuses on how modern biotechnological approaches could help manage waste in an eco-friendly manner and generate precious bioenergy. It discusses the inadequate waste management systems damaging the environment and its adverse impacts on climate change-related problems. This book covers all the essential information regarding various types of waste and their management. It is a comprehensive compilation for understanding the efficient generation of bioenergy. It is a relevant reading material (resource) for anyone who wishes to study waste management as Chemist, Biologist, Biotechnologist, Industrialist, Ecologist, Microbiologist, Economist, and all disciplines related to the environment. |
You may like...
Responding to Environmental Issues…
Carol J. Pierce Colfer, Ravi Prabhu
Hardcover
R3,785
Discovery Miles 37 850
Cloud Analytics for Industry 4.0
Sirisha Potluri, Sachi Nandan Mohanty, …
Hardcover
R4,661
Discovery Miles 46 610
Wild Product Governance - Finding…
Sarah A. Laird, Rebecca J. McLain, …
Paperback
R1,718
Discovery Miles 17 180
|