![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Instruments & instrumentation engineering > General
For instrumentation and measurement courses in process technology programs. The NAPTA Series for Process Technology can be used independently and does not require NAPTA participation. The national standard for process technology instrumentation and measurement Instrumentation is part of the NAPTA Series for Process Technology. Developed in partnership with Industry and Education, this unprecedented collection supports a consistent curriculum and exit competencies for process technology graduates. Instrumentation provides a common national standard for the process technology instrumentation and measurement course of a process technology degree program, while serving as a valuable reference guide. The 2nd edition has been thoroughly updated and revised to align with the new NAPTA curriculum. New! Also available as an eText within MyLab Process Technology By combining trusted author content with digital tools and a flexible platform, MyLab (TM) personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Process Technology does not come packaged with this content. Students, if interested in purchasing this title with MyLab Process Technology, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.
Engineering Science is a comprehensive textbook suitable for all vocational and pre-degree courses in engineering, being fully in line with the latest vocational courses at Level 2 and leading into Level 3. Taking a subject-led approach, engineering students will find the essential scientific principles necessary for their studies, developed topic by topic. Unlike most textbooks available for this field, it goes beyond the core science to include applications in the real world and the mechanical and electrical principles required for the majority of courses. It is supported by numerous worked examples and problems, with a complete set of answers. This new edition gives a detailed consideration of the basic arithmetic, algebraic and graphical methods needed in engineering courses so that it conforms completely with sections A and B of the BTEC Level 2 unit, and it provides the basic tools for the science that follows. A new chapter introduces the basic principles of calculus and more material is given on applications. This includes typical properties of materials and a discussion on the way properties of materials over the ages have changed the basic structures of bridges, weightlessness, snooker, thermal insulation and LEDs, as well as buildings, with a particular look at the engineering behind the collapse of the World Trade Centre.
Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final chapters deal with existing and future devices that are based on nanostructures. Miniaturized systems that analyze air ambience need sensors capable of identifying different gaseous species. Exploring state-of-the-art gas sensing devices, this book shows how nanostructured metal oxides are ideally suited for use as gas sensing elements.
Impedance Spectroscopy is a powerful measurement method used in many application fields such as electro chemistry, material science, biology and medicine, semiconductor industry and sensors. Using the complex impedance at various frequencies increases the informational basis that can be gained during a measurement. It helps to separate different effects that contribute to a measurement and, together with advanced mathematical methods, non-accessible quantities can be calculated. This book is the second in the series Lecture Notes on Impedance Spectroscopy (LNIS). The series covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases scientific contributions as extended chapters including detailed information about recent scientific research results.
Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to understand modern IR detector theory and technology. He presents each topic with a brief summary of historical background followed by summary of principles underlying performance, an overview of properties, and analysis of the state of the art. Divided into four sections, the book covers fundaments of IR detection, IR thermal detectors, IR photon detectors, and focal plane arrays. It begins with a tutorial introduction to essential of different types of IR detectors and systems. The author explores the theory and technology of different thermal detectors and then moves on to the theory and technology of photon detectors. He concludes his treatment with a discussion of IR focal plane arrays where relations between performance of detector array and infrared system quality are considered. New to the Second Edition: Fundamentals of IR detection, radiometry, and flux-transfer issues needed for IR detector and system analysis Major achievements and trends in the development of IR detectors Novel uncooled detectors such as cantilever, antenna, and optically coupled detectors Type II superlattice detectors Quantum dot IR detectors Terahertz (THz) arrays and new generation of IR detectors, so-called third generation detectors The author accomplishes the difficult task of making the information accessible to a wide readership. A comprehensive analysis of the latest developments in IR detector technology and basic insight into the fundamental processes important to evolving detection techniques, the book provides the most complete and up-to-date resource of its kind, including a summary of useful data, guide to the literature, and overview of applications.
Measurement and Data Analysis for Engineering and Science, Fourth Edition, provides up-to-date coverage of experimentation methods in science and engineering. This edition adds five new "concept chapters" to introduce major areas of experimentation generally before the topics are treated in detail, to make the text more accessible for undergraduate students. These feature Measurement System Components, Assessing Measurement System Performance, Setting Signal Sampling Conditions, Analyzing Experimental Results, and Reporting Experimental Results. More practical examples, case studies, and a variety of homework problems have been added; and MATLAB and Simulink resources have been updated.
Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describes sensor dynamics, signal conditioning, and data display and storage Focuses on means of conditioning the analog outputs of various sensors Considers noise and coherent interference in measurements in depth Covers the traditional topics of DC null methods of measurement and AC null measurements Examines Wheatstone and Kelvin bridges and potentiometers Explores the major AC bridges used to measure inductance, Q, capacitance, and D Presents a survey of sensor mechanisms Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers Contains the classic means of measuring electrical quantities Examines digital interfaces in measurement systems Defines digital signal conditioning in instrumentation Addresses solid-state chemical microsensors and wireless instrumentation Introduces mechanical microsensors (MEMS and NEMS) Details examples of the design of measurement systems Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents.
Airplane Performance on Grass Airfields presents an experiment-based approach to analysis and flight testing of airfield performance on grass runways. It discusses improvements for operations efficiency and safety of these airfields. The book analyzes the interaction between the landing gear wheels and the surface of a grass runways during both takeoff and landing. Considering the ground performance of an aircraft on a grass runway, the book covers test methods and devices for measuring performance and introduces an information system for the surface condition of grass airfields: GARFIELD. The system is based on a tire-grass interaction model and uses digital soil maps, as well as current meteorological data obtained from a weather server. The book is intended for researchers and practicing engineers in the fields of aviation and aircraft safety and performance.
This book explains the principles of biosignal processing and its practical applications using MATLAB. Topics include the emergence of biosignals, electrophysiology, analog and digital biosignal processing, signal discretization, electrodes, time and frequency analysis, analog and digital filters, Fourier-transformation, z-transformation, pattern recognition, statistical data analysis, physiological modelling and applications of EEG, ECG, EMG, PCG and PPG signals. Additional scientifi c contributions on motion analysis by guest authors Prof. Dr. J. Subke and B. Schneider as well as classification of PPG signals by Dr. U. Hackstein.
Proceeding from rapid prototyping (RP) fundamentals and advancing to s Create more accurate prototypes from computer-aided design (CAD) model Promoting design and manufacturing techniques Written from an expert m achine operatorFs perspective and containing numerous photographs, tab les, convenient vendor references, and a reading list, Rapid Prototypi ng Technology fulfills the reference needs of mechanical, manufacturin g, materials, plastics, software, computer, design, quality, and relia bility engineers; and production and operations managers in manufactur ing; and serves as an essential text for upper-level undergraduate and graduate students in these disciplines.
This book focuses primarily on the atomic force microscope and serves as a reference for students, postdocs, and researchers using atomic force microscopes for the first time. In addition, this book can serve as the primary text for a semester-long introductory course in atomic force microscopy. There are a few algebra-based mathematical relationships included in the book that describe the mechanical properties, behaviors, and intermolecular forces associated with probes used in atomic force microscopy. Relevant figures, tables, and illustrations also appear in each chapter in an effort to provide additional information and points of interest. This book includes suggested laboratory investigations that provide opportunities to explore the versatility of the atomic force microscope. These laboratory exercises include opportunities for experimenters to explore force curves, surface roughness, friction loops, conductivity imaging, and phase imaging.
This tool needs no maintenance Fully revised and updated, this convenient guide covers the latest industrial equipment as well as all the tools and machines prevalent in older plants, even those from the early 1970s and before. Your complete reference tool
Sensors are all around us. They are in phones, cars, planes, trains, robots, mils, lathes, packaging lines, chemical plants, power plants, etc. Modern technology could not exist without sensors. The sensors measure what we need to know and the control system then performs the desired actions. When an engineer builds any machine he or she needs to have basic understanding about sensors. Correct sensors need to be selected for the design right from the start. The designer needs to think about the ranges, required accuracy, sensor cost, wiring, correct installation and placement etc. Without the basic knowledge of sensors fundamental no machine can be built successfully today. The objective of this book is to provide the basic knowledge to electrical and mechanical engineers, engineering students and hobbyist from the field of sensors to help them with the selection of "proper" sensors for their designs. No background knowledge in electrical engineering is required, all the necessary basics are provided. The book explains how a sensor works, in what ranges it can be used, with what accuracy etc. It also provides examples of industrial application for selected sensors. The book covers all the major variables in mechanical engineering such as temperature, force, torque, pressure, humidity, position, speed, acceleration etc. The approach is always as follows: - Explain how the sensor works, what is the principle - Explain in what ranges and with what accuracy it can work - Describe its properties with charts, eventually equations - Give examples of such sensors including application examples
The recent explosion in the use of analytical chemistry, particularly in the biological sciences, has led to a need for fast, reliable and highly sensitive tools able to handle small sample sizes. This book illustrates how microfluidics and lab-on-a-chip devices can satisfy the growing need for miniaturized and enhanced analysis. They lend themselves well to mass spectrometric detection as they use samples in the low microlitre range and are handled on a chip. Miniaturization and Mass Spectrometry focuses on one particular technique, mass spectrometry, whose popularity has increased dramatically in the last two decades with the increase in use of biological analysis and the development of two "soft" ionization techniques, ESI and MALDI. These enable the analysis of large but fragile biological molecules such as DNA, proteins and oligosaccharides. The book starts with an introduction to the coupling of microfluidics to mass spectrometry techniques. It then goes on demonstrate the advantages of such a coupling: the MS analysis benefits from improved sample preparation when performed on a chip while MS yields more information on the sample handled on the chip compared to conventional optical detection. A history on the developments in this field, starting from the off-chip coupling to the on-chip ionization, is also provided. Daniel Figeys, a pioneer in the development of microfluidic systems for MS analysis, describes the early beginnings of this hyphenated analysis technique. Solutions to couple microfluidic systems to the two most popular ionization methods, ESI and MALDI, are presented throughout the chapters. Various examples are given of the application of this microfluidics-MS hyphenated analysis technique to proteomics, metabolomics, organic chemistry and forensics. Coverage is not limited to academic research. The development of commercialized systems and their current use for routine biological analysis are also presented. Lastly, a future vision of the integration of the mass spectrometer on the chip is raised, as a last step to yield fully portable systems for on-site analysis.
This book introduces the principle of carrying out a medium-term load forecast (MTLF) at power system level, based on the Big Data concept and Convolutionary Neural Network (CNNs). It also presents further research directions in the field of Deep Learning techniques and Big Data, as well as how these two concepts are used in power engineering. Efficient processing and accuracy of Big Data in the load forecast in power engineering leads to a significant improvement in the consumption pattern of the client and, implicitly, a better consumer awareness. At the same time, new energy services and new lines of business can be developed. The book will be of interest to electrical engineers, power engineers, and energy services professionals.
This book covers the fundamental aspects and the application of electrochemical impedance spectroscopy (EIS), with emphasis on a step-by-step procedure for mechanistic analysis of data. It enables the reader to learn the EIS technique, correctly acquire data from a system of interest, and effectively interpret the same. Detailed illustrations of how to validate the impedance spectra, use equivalent circuit analysis, and identify the reaction mechanism from the impedance spectra are given, supported by derivations and examples. MATLAB (R) programs for generating EIS data under various conditions are provided along with free online video lectures to enable easier learning. Features: Covers experimental details and nuances, data validation method, and two types of analysis - using circuit analogy and mechanistic analysis Details observations such as inductive loops and negative resistances Includes a dedicated chapter on an emerging technique (Nonlinear EIS), including code in the supplementary material illustrating simulations Discusses diffusion, constant phase element, porous electrodes, and films Contains exercise problems, MATLAB codes, PPT slide, and illustrative examples This book is aimed at senior undergraduates and advanced graduates in chemical engineering, analytical chemistry, electrochemistry, and spectroscopy.
This hands-on guide bridges theory and practice in electronic projects often found in small or medium sized companies. The book builds on heuristics used in developing anything from hand-held devices to consoles of equipment. Using a systems perspective to integrate engineering principles with real applications, this book gives specific examples, and describes the interactions, trade-offs, and priorities encountered throughout the life cycle of an electronic instrument. Electronic Instrument Design could be used as a `principles' text for senior undergraduates or serve as a reference handbook for practising engineers.
This book describes for readers various technical outcomes from the EU-project IoSense. The authors discuss sensor integration, including LEDs, dust sensors, LIDAR for automotive driving and 8 more, demonstrating their use in simulations for the design and fabrication of sensor systems. Readers will benefit from the coverage of topics such as sensor technologies for both discrete and integrated innovative sensor devices, suitable for high volume production, electrical, mechanical, security and software resources for integration of sensor system components into IoT systems and IoT-enabling systems, and IoT sensor system reliability. Describes from component to system level simulation, how to use the available simulation techniques for reaching a proper design with good performance; Explains how to use simulation techniques such as Finite Elements, Multi-body, Dynamic, stochastics and many more in the virtual design of sensor systems; Demonstrates the integration of several sensor solutions (thermal, dust, occupancy, distance, awareness and more) into large-scale system solutions in several industrial domains (Lighting, automotive, transport and more); Includes state-of-the-art simulation techniques, both multi-scale and multi-physics, for use in the electronic industry.
An authoritative reference on all aspects of audio engineering and
technology including basic mathematics and formulae, acoustics and
psychoacoustics, microphones, loudspeakers and studio
installations.
The book begins with an overview of automation history and followed by chapters on PLC, DCS, and SCADA -describing how such technologies have become synonymous in process instrumentation and control. The book then introduces the niche of Fieldbuses in process industries. It then goes on to discuss wireless communication in the automation sector and its applications in the industrial arena. The book also discusses theall-pervading IoT and its industrial cousin,IIoT, which is finding increasing applications in process automation and control domain. The last chapter introduces OPC technology which has strongly emerged as a defacto standard for interoperable data exchange between multi-vendor software applications and bridges the divide between heterogeneous automation worlds in a very effective way. Key features: Presents an overall industrial automation scenario as it evolved over the years Discusses the already established PLC, DCS, and SCADA in a thorough and lucid manner and their recent advancements Provides an insight into today's industrial automation field Reviews Fieldbus communication and WSNs in the context of industrial communication Explores IIoT in process automation and control fields Introduces OPC which has already carved out a niche among industrial communication technologies with its seamless connectivity in a heterogeneous automation world Dr. Chanchal Dey is Associate Professor in the Department of Applied Physics, Instrumentation Engineering Section, University of Calcutta. He is a reviewer of IEEE, Elsevier, Springer, Acta Press, Sage, and Taylor & Francis Publishers. He has more than 80 papers in international journals and conference publications. His research interests include intelligent process control using conventional, fuzzy, and neuro-fuzzy techniques. Dr. Sunit Kumar Sen is an ex-professor, Department of Applied Physics, Instrumentation Engineering Section, University of Calcutta. He was a coordinator of two projects sponsored by AICTE and UGC, Government of India. He has published around70 papers in international and national journals and conferences and has published three books - the last one was published by CRC Press in 2014. He is a reviewer of Measurement, Elsevier. His field of interest is new designs of ADCs and DACs.
Revised and expanded for this new edition, Smart CMOS Image Sensors and Applications, Second Edition is the only book available devoted to smart CMOS image sensors and applications. The book describes the fundamentals of CMOS image sensors and optoelectronic device physics, and introduces typical CMOS image sensor structures, such as the active pixel sensor (APS). Also included are the functions and materials of smart CMOS image sensors and present examples of smart imaging. Various applications of smart CMOS image sensors are also discussed. Several appendices supply a range of information on constants, illuminance, MOSFET characteristics, and optical resolution. Expansion of smart materials, smart imaging and applications, including biotechnology and optical wireless communication, are included. Features * Covers the fundamentals and applications including smart materials, smart imaging, and various applications * Includes comprehensive references * Discusses a wide variety of applications of smart CMOS image sensors including biotechnology and optical wireless communication * Revised and expanded to include the state of the art of smart image sensors
This book provides an updated description of the most relevant types of highly nonlinear fibers. It also describes some of their actual applications for nonlinear optical signal processing. Multiple types of highly nonlinear fibers are considered, such as silica-based conventional highly nonlinear fibers, tapered fibers, photonic crystal fibers, and fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses. Several nonlinear phenomena occurring on such highly nonlinear fibers are described and used to realize different functions in the area of all-optical signal processing. Describes several nonlinear phenomena occurring on optical fibers, namely nonlinear phase modulation, parametric and stimulated scattering processes, optical solitons, and supercontinuum generation. Discusses different types of highly nonlinear fibers, namely silica-based conventional highly nonlinear fibers, tapered fibers, and photonic crystal fibers. Examines fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses. Describes the application of several nonlinear phenomena occurring on highly nonlinear fibers to realize different functions in the area of all-optical signal processing, namely optical amplification, multiwavelength sources, pulse generation, optical regeneration, wavelength conversion, and optical switching. Mario F. S. Ferreira received his PhD degree in 1992 in physics from the University of Aveiro, Portugal, where he is now a professor in the Physics Department. Between 1990 and 1991, he was at the University of Essex, UK, performing experimental work on external cavity semiconductor lasers and nonlinear optical fiber amplifiers. His research interests have been concerned with the modeling and characterization of multisection semiconductor lasers, quantum well lasers, optical fiber amplifiers and lasers, soliton propagation, nanophotonics, optical sensors, polarization, and nonlinear effects in optical fibers. He has written more than 400 scientific journal and conference publications and several books in the area of mathematical physics, optics, and photonics. He has served as chair and committee member of multiple international conferences, as well as guest editor and advisory board member of several international journals.
In the current push to convert to renewable sources of energy, many issues raised years ago on the economics and the difficulties of siting energy storage are once again being raised today. When large amounts of wind, solar, and other renewable energy sources are added to existing electrical grids, efficient and manageable energy storage becomes a crucial component to allowing a range of eco-friendly resources to play a significant role in our energy system. In order to fulfill our intended goal of diminishing dependence on non-renewable sources of energy and reducing our carbon footprint, we must find a way to store and convert these novel resources into practical solutions. Based on the efforts of a University of Colorado team devoted to increasing the use of renewable energy production within the current electrical power grid, Large Energy Storage Systems Handbook examines a number of ways that energy can be stored and converted back to electricity. Examining how to enhance renewable generation energy storage relative to economic and carbon impact, this book discusses issues of reliability, siting, economics, and efficiency. Chapters include the practicalities of energy storage, generation, and absorption of electrical power; the difficulties of intermittent generation; and the use of pumped and underground pumped hydroelectric energy storage. The book highlights the storage of compressed air, battery energy, solar thermal, and natural gas sources of energy. Heavily referenced and easily accessible to policy makers, developers, and students alike, this book provides contributions from those active in the field for coverage of many important topics. With this book as a foundation, these pioneers can develop the capacity of power grids to handle high renewable energy generation penetration and provide a brighter future for generations to come. |
![]() ![]() You may like...
Introduction to Data Systems - Building…
Thomas Bressoud, David White
Hardcover
R2,423
Discovery Miles 24 230
Algorithm Design: A Methodological…
Patrick Bosc, Marc Guyomard, …
Paperback
R1,641
Discovery Miles 16 410
C++ How to Program: Horizon Edition
Harvey Deitel, Paul Deitel
Paperback
R1,917
Discovery Miles 19 170
Blockchain Technology: Platforms, Tools…
Pethuru Raj, Ganesh Chandra Deka
Hardcover
R4,474
Discovery Miles 44 740
|