![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Instruments & instrumentation engineering > General
How Can We Lower the Power Consumption of Gas Sensors? There is a growing demand for low-power, high-density gas sensor arrays that can overcome problems relative to high power consumption. Low power consumption is a prerequisite for any type of sensor system to operate at optimum efficiency. Focused on fabrication-friendly microelectromechanical systems (MEMS) and other areas of sensor technology, MEMS and Nanotechnology for Gas Sensors explores the distinct advantages of using MEMS in low power consumption, and provides extensive coverage of the MEMS/nanotechnology platform for gas sensor applications. This book outlines the microfabrication technology needed to fabricate a gas sensor on a MEMS platform. It discusses semiconductors, graphene, nanocrystalline ZnO-based microfabricated sensors, and nanostructures for volatile organic compounds. It also includes performance parameters for the state of the art of sensors, and the applications of MEMS and nanotechnology in different areas relevant to the sensor domain. In addition, the book includes: An introduction to MEMS for MEMS materials, and a historical background of MEMS A concept for cleanroom technology The substrate materials used for MEMS Two types of deposition techniques, including chemical vapour deposition (CVD) The properties and types of photoresists, and the photolithographic processes Different micromachining techniques for the gas sensor platform, and bulk and surface micromachining The design issues of a microheater for MEMS-based sensors The synthesis technique of a nanocrystalline metal oxide layer A detailed review about graphene; its different deposition techniques; and its important electronic, electrical, and mechanical properties with its application as a gas sensor Low-cost, low-temperature synthesis techniques An explanation of volatile organic compound (VOC) detection and how relative humidity affects the sensing parameters MEMS and Nanotechnology for Gas Sensors provides a broad overview of current, emerging, and possible future MEMS applications. MEMS technology can be applied in the automotive, consumer, industrial, and biotechnology domains.
Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to understand modern IR detector theory and technology. He presents each topic with a brief summary of historical background followed by summary of principles underlying performance, an overview of properties, and analysis of the state of the art. Divided into four sections, the book covers fundaments of IR detection, IR thermal detectors, IR photon detectors, and focal plane arrays. It begins with a tutorial introduction to essential of different types of IR detectors and systems. The author explores the theory and technology of different thermal detectors and then moves on to the theory and technology of photon detectors. He concludes his treatment with a discussion of IR focal plane arrays where relations between performance of detector array and infrared system quality are considered. New to the Second Edition: Fundamentals of IR detection, radiometry, and flux-transfer issues needed for IR detector and system analysis Major achievements and trends in the development of IR detectors Novel uncooled detectors such as cantilever, antenna, and optically coupled detectors Type II superlattice detectors Quantum dot IR detectors Terahertz (THz) arrays and new generation of IR detectors, so-called third generation detectors The author accomplishes the difficult task of making the information accessible to a wide readership. A comprehensive analysis of the latest developments in IR detector technology and basic insight into the fundamental processes important to evolving detection techniques, the book provides the most complete and up-to-date resource of its kind, including a summary of useful data, guide to the literature, and overview of applications.
Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods. The book first builds a foundation for evaluating optical measurement methods. It explores the many terms of optical metrology and compares it to other forms of metrology, such as mechanical gaging, highlighting the limitations and errors associated with each mode of measurement at a general level. This comparison is particularly helpful to current industry users who operate the most widely applied mechanical tools. The book then focuses on each application area of measurement, working down from large area to medium-sized to submicron measurements. It describes the measurement of large objects on the scale of buildings, the measurement of durable manufactured goods such as aircraft engines and appliances, and the measurement of fine features on the micron and nanometer scales. In each area, the book covers fast, coarse measures as well as the finest measurements possible. Best practices and practical examples for each technology aid readers in effectively using the methods. Requiring no prior expertise in optical dimensional metrology, this handbook helps engineers and quality specialists understand the capabilities and limitations of optical metrology methods. It also shows them how to successfully apply optical metrology to a vast array of current engineering and scientific problems.
Foreword by Nobel laureate Professor Theodor W. Hansch of Ludwig-Maximilians-Universitat Munchen Based on the authors' experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physics. It provides all the background information on the main kinds of laser sources and techniques, offers a detailed account of the most recent results obtained for time- and frequency-domain applications of lasers, and develops the theoretical framework necessary for understanding the experimental applications. After a historical introduction, the book describes the basic concepts and mathematical tools required for studying the physics of oscillators. It then discusses microwave and optical resonators, crucial aspects of operation and fundamental properties of lasers, and precision spectroscopy and absolute frequency metrology. It also focuses on microwave and optical frequency standards and explores current and potential research directions. Accessible to scientists, postdoc researchers, and advanced undergraduate students, this self-contained book gives a wide-ranging, balanced overview of the areas-including frequency standards and clocks, ultra-high-precision spectroscopy, quantum information, and environmental metrology-revolutionized by the recent advent of optical frequency comb synthesizers (OFCSs) based on femtosecond mode-locked lasers. The book is also a useful guide to cutting-edge research for manufacturers of advanced laser systems and optical devices.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.
Advanced Optical Instruments and Techniques includes twenty-three chapters providing processes, methods, and procedures of cutting-edge optics engineering design and instrumentation. Topics include biomedical instrumentation and basic and advanced interferometry. Optical metrology is discussed, including point and full-field methods. Active and adaptive optics, holography, radiometry, the human eye, and visible light are covered as well as materials, including photonics, nanophotonics, anisotropic materials, and metamaterials.
Fundamentals and Basic Optical Instruments includes thirteen chapters providing an introductory guide to the basics of optical engineering, instrumentation, and design. Topics include basic geometric optics, basic wave optics, and basic photon and quantum optics. Paraxial ray tracing, aberrations and optical design, and prisms and refractive optical components are included. Polarization and polarizing optical devices are covered, as well as optical instruments such as telescopes, microscopes, and spectrometers.
Sensor technologies have experienced dramatic growth in recent years, making a significant impact on national security, health care, environmental improvement, energy management, food safety, construction monitoring, manufacturing and process control, and more. However, education on sensor technologies has not kept pace with this rapid development ... until now. Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies examines existing, new, and novel sensor technologies and-through real-world examples, sample problems, and practical exercises-illustrates how the related science and engineering principles can be applied across multiple disciplines, offering greater insight into various sensors' operating mechanisms and practical functions. The book assists readers in understanding resistive, capacitive, inductive, and magnetic (RCIM) sensors, as well as sensors with similar design concepts, characteristics, and circuitry. Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies is a complete and comprehensive overview of RCIM sensing technologies. It takes a unique approach in describing a broad range of sensing technologies and their diverse applications by first reviewing the necessary physics, and then explaining the sensors' intrinsic mechanisms, distinctive designs, materials and manufacturing methods, associated noise types, signal conditioning circuitry, and practical applications. The text not only covers silicon and metallic sensors but also those made of modern and specialized materials such as ceramics, polymers, and organic substances. It provides cutting-edge information useful to students, researchers, scientists, and practicing professionals involved in the design and application of sensor-based products in fields such as biomedical engineering, mechatronics, robotics, aerospace, and beyond.
Electronic Noses and Olfaction 2000 reflects the state of progress toward the development and application of electronic instruments called electronic noses (e-noses). These instruments are generally based on arrays of sensors for volatile chemicals with broadly tuned selectivity, coupled to appropriate pattern recognition systems. They are capable of detecting and discriminating a number of different simple and complex odors, such as the headspace of coffee and olive oil, as well as being able to perform simple multicomponent gas analysis. Written by international scientists, engineers, technologists, clinicians, investigators, and instrument manufacturers working in the applied research of e-noses as well as in the applications of olfaction and taste, this volume is essential reading for anyone who wants a review of the latest developments in odor sensors, instrumentation and signal processing, and their medical, agricultural, and food-related applications.
"Reviews operation principles and methods for most Solid Freeform technologies and historical systems data. Illustrates the uses and mechanical details for a number of systems, including JP-System 5, Ballistic Particle Manufacturing, Fused Deposition Modeling, Laminated Object Manufacturing, Stereolithography, and Selective Laser Sintering, and more."
The need for both intrinsic and extrinsic fiber optic sensor technologies continues to grow. To meet the demands of this fast expanding applications-driven market, Fiber Optic Sensors, Second Edition presents both the latest advances in fiber optic sensor technology, such as the application of photonic crystal fibers to fiber optic gyroscopes, and recent application opportunities, including the use of fiber optic sensors as a minimally invasive medical treatment. The new edition of this seminal work highlights the development of fiber optic sensors, while providing an overview of current methods for the construction of high-speed and high-capacity fiber optic systems. Two new chapters cover topics such as femtosecond laser illumination inscription and the growing application sector of fiber optic chemical and biological sensors. Adding significant new material, the book continues to provide a progressive history of each sensor type as well as basic principles and fundamental building blocks for practical applications in the electrical aerospace, defense and manufacturing, smart structure, undersea surveillance, medical, and gas and oil industries.
This second edition of An Introduction to Predictive Maintenance
helps plant, process, maintenance and reliability managers and
engineers to develop and implement a comprehensive maintenance
management program, providing proven strategies for regularly
monitoring critical process equipment and systems, predicting
machine failures, and scheduling maintenance accordingly.
Impedance Spectroscopy is a powerful measurement method used in many application fields such as electro chemistry, material science, biology and medicine, semiconductor industry and sensors. Using the complex impedance at various frequencies increases the informational basis that can be gained during a measurement. It helps to separate different effects that contribute to a measurement and, together with advanced mathematical methods, non-accessible quantities can be calculated. This book is the second in the series Lecture Notes on Impedance Spectroscopy (LNIS). The series covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases scientific contributions as extended chapters including detailed information about recent scientific research results.
Gives a comprehensive view on the nanomaterials used in plasmonic optical fiber biosensors Includes synthesis, characterization, and usage for detection of different analytes Discusses trends in the design of wavelength-based optical fiber sensors Reviews micro- and nanostructured biosensing devices Explores application of plasmonic sensors in the biosensing field
This authoritative new book focuses on recent developments in the instrumentation for sending voltages and currents. It covers new trends and challenges in the field, such as measurements of biocurrents, the increased speed of the components for data taking, testing of computers and integrated circuits where the measurement of rapid voltage and current variations on a very small geometrical scale is necessary. The first chapter concentrates on recent methods to sense voltages and currents, while the rest of the book investigates the applied side, covering for instance electrical power and energy measurements. The main purpose of this volume is to illustrate commonly employed techniques rather than track the scientific evolution and merits and therefore mainly covers patent literature aimed at industrial applications. It is an exciting addition, justifying the series' claim to cover state-of-the-art developments in both the applied and theoretical fields of sensors and actuators. The measurement of voltages and currents is a common task in the field of electricity and electronics. From a technical point of view it is useful to identify schematically different steps of such a measurement. In a first step a voltage or a current is sensed, intermediate steps such as amplification, transmission and further treatment may follow to yield the result in the final step. Today in most cases microprocessors perform the final steps of such measurements. Analog-to digital converters digitise a voltage that is proportional to the value to be measured and a processor performs further computations and handles the storage and the display of the results. The prerequisite for such measurements are sensors or transducers that respond in a known way to the voltage or current to be measured. The emphasis of this book is put on recent developments of the instrumentation for sensing voltages and currents. Aside from the general trend towards smaller, cheaper and more reliable instrumentation, new demands have arisen. New applications, like measurements of biocurrents, ask for higher sensitivities. Computers and integrated circuits pose new challenges. To exploit the increased speed of the components for data taking, suitable sensors are required. The accuracy that can be achieved depends more than ever on the first step, the acquisition of the raw data. The influence of the measurement process on the results becomes more crucial. Testing of integrated circuits themselves is a completely new application. For such tests one has to measure rapid voltage and current variations on very small geometrical scales. Here, as well as in the traditional high voltage applications, contactless measurements play an important role. The organisation of this book is as follows: In the first chapter different methods to sense voltages and currents are described. For the sake of completeness most commonly used methods are mentioned, we concentrate, however, on those developed recently. The chapters address the subject from the side of different applications in which voltages and currents are sensed. Since the main purpose of this publication is to illustrate commonly employed techniques rather than to track the scientific evolution and merits in particular fields, in general those publications that illustrate a particular measurement principle best have been cited. The citation of a particular reference does therefore not imply that this is the first or most pertinent publication in the respective field.
The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operation, and maintenance Data quality assessment Methods to use measured data to estimate irradiance for any surface With a broad range of content that will benefit students and more experienced readers alike, this resource serves as a primer and technical reference that presents the basic terminology and fundamentals for resource assessment. It explores the history of solar radiation instruments and addresses direct normal, global, diffuse, and tilted measurements, as well as the characteristics of instruments used for these measurements. The authors consider methods of assessing the uncertainty of solar measurements and then cover albedo, infrared, net, and spectral irradiance measurements and instrumentation. The book devotes a section to other meteorological instruments, and another to the basics for installing and operating a solar monitoring station. Appendices include information on solar resource assessment modeling and satellite-derived irradiance, along with other useful material. This book's authors are experts who each have more than 30 years of experience developing and operating multiple measurement stations, working with industry to improve radiometry, and conducting various research projects.
Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detectors, an important supplement to the knowledge now required to achieve full understanding of the workings of SDDs, CCDs, and Compound Semiconductor Detectors. The book provides an up-to-date review of the principles, practical applications, and state of the art of semiconductor x-ray detectors. It describes many of the facets of x-ray detection and measurement using semiconductors, from manufacture to implementation. The initial chapters present a self-contained summary of relevant background physics, materials science, and engineering aspects. Later chapters compare and contrast the assembly and physical properties of systems and materials currently employed, enabling readers to fully understand the materials and scope for applications.
This book details the latest developments in sensing technology and its application in food industry. It explores the opportunities created by the chemical and biosensing technology and improvements performed in recent years for better food quality, better food safety, better food processing and control, and better input for food industry. The chapters in this book have been divided into three sections: basic principles of chemical and biosensing technology, biosensors for food processing and control, and biosensors for food safety.
Integrating physical modeling, mathematical analysis, and computer simulation, Instrumentation Design Studies explores a wide variety of specific and practical instrumentation design situations. The author uses MATLAB (R) and SIMULINK (R) for dynamic system simulation, Minitab (R) for statistical applications, and Mathcad for general engineering computations. Rather than consult the extensive manuals of these software packages, readers can access handy, sharply focused material in the appendices to assist in comprehension. After introducing the techniques behind the design of experiments (DOE), the book discusses several technologies for implementing vibration isolation, the design of a high-accuracy pressure transducer, and the use of cold-wire thermometers for measuring rapidly fluctuating fluid temperatures. It then focuses on a basic piezoelectric actuator that provides translational motions up to about 1mm full scale with nanometer resolution, before covering instruments used to measure the viscosity of liquids as well as two special classes of microphones (infrasonic and ultrasonic) and their important specialized applications. The book also presents statistical tools, such as hypothesis testing and confidence intervals, for experiments; the design and applications of thrust stands for measuring vector forces and torques; and the analysis and simulation of a shock calibrator. It concludes with a discussion of how shock testing machines can help reduce or prevent mechanical failures. Spanning system dynamics, measurement, and control, this book addresses the needs of practicing engineers working in instrumentation fields. It focuses on instruments for various applications, from geophysics to mechanical and aerospace engineering.
Geotechnical instrumentation is used for installation, monitoring and assessment on any sizeable project, particularly in urban areas, and is used for recording, controlled remedial work, and safety. This unique and up-to-date book deals with the conceptual philosophy behind the use of instruments, and then systematically covers their practical use. It is divided into displacement dominated systems and stress recording systems. The limitations are discussed and the theoretical background for data assessment and presentation are covered in some detail, with some relevant background material in theoretical soil mechanics. Relevant advanced electronic techniques such as laser scanning in surveying and fibre-optics are also included and communication and data recovery systems are discussed. This book is written for senior designers, consulting engineers, and major contractors who need a major introduction to the general purpose, availability, and analysis of field instruments before details of their own project can be progressed, and it serves as a textbook to any specialist geotechnical MSc or professional seminar course in which instrumentation forms a major part.
"[Contains] more lengthy mathematical derivations than most {comparable books] ... for arrays, provides for a unique, stand-alone mathematical description that can be adopted by anyone trying to communicate the theoretical foundation for their array design...has insights from a practitioner that are unique. The MATLAB (R) scripts alone are worth the price." -Daniel C. Ross, Ph. D, Northrop Grumman Corporation Electronically Scanned Arrays: MATLAB (R) Modeling and Simulation is considered the first book to provide comprehensive modeling/simulation programs used to design and analyze Electronically Scanned Arrays (ESA), a key technology internationally in the scientific and engineering communities. Several books have been written about ESAs, but most cover only fundamental theory. Few, if any, provide the insightful, easy-to-use simulation tools found in this book. Obviously, MATLAB (R) is one of the greatest tools available for exploring and understanding science and engineering concepts, and we use MATLAB functions to easily and instantly calculate ESA patterns. However, to achieve a truly insightful and in-depth analysis of subarray architectures, conformal arrays, etc., it is imperative that users first develop a firm grasp of ESA fundamentals. Covers largely unexplored topics, such as reliability aspects and the application of ESAs in space This volume helps readers build that elemental understanding of how ESAs work. It also provides code to run as an aid, so that readers don't have to start from scratch. The book expands on ESA principles and provides a modeling framework, using MATLAB to model applications of ESAs (i.e. pattern optimization, space-based applications, and reliability analysis). Presented code serves as an excellent vehicle to help readers master the analysis and simulation of ESAs. Exploring how difficult problems can be simplified with short, elegant solutions, this is an invaluable resource for students and others new to ESAs, as well as experienced practicing engineers who model ESAs at the systems level.
With classical techniques for data transmission soon reaching their limitations, cognitive approaches may offer a solution to user requirements for better coverage, connectivity, security, and energy efficiency at lower cost. Wireless Sensor Networks: A Cognitive Perspective presents a unified view of the state of the art of cognitive approaches in telecommunications. A benchmark in the field, it brings together research that has previously been scattered throughout conference and journal papers. Cutting-Edge Topics in Cognitive Communications After a review of the cognitive concept and approaches, the book outlines a generic architecture for cognition in wireless sensor networks. It then targets specific issues that need to be addressed through cognition, from cognitive radio and spectrum access to routing protocols. The book also explores how to use weighted cognitive maps to improve network lifetime through optimizing routing, medium access, and power control while fulfilling end-to-end goals. The final chapter discusses the implementation of hardware for GPS/INS-enabled wireless sensor networks. This addresses an important need for real-time node position information in many wireless sensor network applications and communication protocols. Real-World Applications of Wireless Sensor Networks using the Cognitive Concept Written in a tutorial style, the book supplies an in-depth survey of each topic, accompanied by detailed descriptions of the algorithms and protocols. It also provides a step-by-step analysis of the various communications systems through extensive computer simulations and illustrations. Examples cover environmental monitoring, vehicular communications, tracking, and more. A comprehensive overview of cognitive communications in wireless sensor networks, this work lays the foundations for readers to participate in a new era of research in this emerging field.
Providing a succinct introduction to the systemization, noise sources, and signal processes of image sensor technology, Essential Principles of Image Sensors discusses image information and its four factors: space, light intensity, wavelength, and time. Featuring clarifying and insightful illustrations, this must-have text: Explains how image sensors convert optical image information into image signals Treats space, wavelength, and time as digitized built-in coordinate points in image sensors and systems Details the operational principles, pixel technology, and evolution of CCD, MOS, and CMOS sensors with updated technology Describes sampling theory, presenting unique figures demonstrating the importance of phase Explores causes for the decline of image information quality In a straightforward manner suitable for beginners and experts alike, Essential Principles of Image Sensors covers key topics related to digital imaging including semiconductor physics, component elements necessary for image sensors, silicon as a sensitive material, noises in sensors, and more. |
![]() ![]() You may like...
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,425
Discovery Miles 64 250
Power Plant Instrumentation and Control…
Swapan Basu, Ajay Kumar Debnath
Hardcover
Smart External Stimulus-Responsive…
Mahdi Karimi, Parham Sahandi Zangabad, …
Hardcover
R3,082
Discovery Miles 30 820
GIS Applications in the Tourism and…
Somnath Chaudhuri, Nilanjan Ray
Hardcover
R5,512
Discovery Miles 55 120
|